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Abstract. The Bell–Kochen–Specker theorem against non-contextual hidden variables can be
proved by constructing a finite set of ‘totally non-colourable’ directions, as Kochen and Specker
did in a Hilbert space of dimensionn = 3. We generalize Kochen and Specker’s set to Hilbert
spaces of any finite dimensionn > 3, in a three-step process that shows the relationship between
different kinds of proofs (‘continuum’, ‘probabilistic’, ‘state-specific’ and ‘state-independent’)
of the Bell–Kochen–Specker theorem. At the same time, this construction of a totally non-
colourable set of directions in any dimension explicitly solves the question raised by Zimba and
Penrose about the existence of such a set forn = 5.

1. Introduction

Kochen and Specker (KS) [1–4] and, independently, Bell [5] proved what nowadays is called
the Bell–Kochen–Specker (BKS) theorem, implying that quantum mechanics (QM) cannot be
‘completed’ with non-contextual hidden variables (NCHV), i.e. those which assign definite
values to physical observables independently of which other compatible observables are
jointly measured. The proof of theBKS theorem is based in the following mathematical
result. Given a Hilbert space of dimensionn, one can find sets of rays that cannot be mapped
to the two-element set{0, 1} in such a way that forany subset ofn mutually orthonormal
rays, the images ofn − 1 of them are 0 and the image of the remaining ray is 1. Such sets
(which in this paper shall be calledtotally non-colourable sets,TNCSs) exist in any Hilbert
space of dimensionn > 3; in particular,KS [4] produced an example with 117 rays in a
real Hilbert space withn = 3. The connection between the impossibility ofNCHV and the
existence ofTNCSswill be briefly reviewed in section 2 of this paper.

Recently, Zimba and Penrose [6] have proved that combining twoTNCSsin dimensions
n and m one can obtain a newTNCS in dimensionn + m. Since severalTNCSs have been
discussed in the literature for spaces of dimension 3 [4, 7–10] and 4 [6, 9, 10], Zimba and
Penrose’s theorem shows how to createTNCSs for any dimensionk > 6 (thek = 5 case is
excluded since 5 cannot be obtained as the sum of some number of 3s and some number of
4s). In section 3 of this paper, we generalize to any finite dimensionn > 3 (n = 5 included)
the three-step procedure used byKS [4] to construct aTNCS in n = 3. The first two steps
in this construction ofTNCSs in section 3 are related to other variants of theBKS theorem,
as we show in section 4; this reveals the relationship between different published proofs of
the BKS theorem and allows us to classify most of them. Finally, in section 5, we discuss
the physical meaning of the observables that appear in these proofs and the feasibility of
joint measurements of compatible sets of them. The construction of otherTNCSs is briefly
discussed in the appendix.
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2. The Bell–Kochen–Specker theorem

In QM, physical observables and states can be represented by self-adjoint operators in a
complex Hilbert space. Let̂A be a self-adjoint operator in a complex Hilbert space of
dimensionn, Hn. Â can always be expressed as a linear combination of a complete
set{P̂i}ni=1 of projectors on one-dimensional orthogonal subspaces ofHn, Â = ∑n

i=1 aiP̂i .
Physically, this means that the observableA can, in principle, be implemented as a set of
yes–no (propositions[11]) ‘one-dimensional’ mutually compatible experiments,{Pi}ni=1.

In QM, the resultr(Pi) of a measurement of a propositionPi is one of the eigenvalues
of the projectorP̂i (1 with multiplicity 1 and 0 with multiplicityn − 1). Since the identity
operator inHn can be decomposed into the sum of the projectors of a complete set,
Î = ∑n

i=1 P̂i , the results of a joint measurement of all the ‘one-dimensional’ compatible
propositions of a complete set{Pi}ni=1 must verify

n∑
i=1

r(Pi) = 1 . (1)

Let us consider aNCHV theory in which propositionsPi can have predefined values
v(Pi) before the corresponding measurement; theBKS theorem asserts that, ifn > 3, it is
not possible to assign valuesv(Pi) in an individual system to all the propositionsPi in such
a way that this assignment verifies:

(i) Non-contextuality: each proposition is assigned asinglevalue (1 or 0) which is thesame
independently of which other compatible propositions are chosen to form the complete
set{Pi}ni=1.

(ii) The sum of the values assigned to any complete set of mutually compatible (one-
dimensional) propositions{Pi}ni=1 verify

n∑
i=1

v(Pi) = 1 . (2)

Let us formulate these constraints in another way. In then-dimensional real projective
space,RP n, we can identify one-dimensional projectorsP̂i with directionsri (which we
will represent as row vectors) on ann-dimensional unitary sphere with opposite points
identified, by the relation̂Pi = rt

i ⊗ri (wheret means transposition); commuting projectors
(compatible propositions) correspond to orthogonal directions, and a complete set ofn

commuting projectors, to a set ofn orthogonal directions.
From rules (i) and (ii) for the assignment of values to propositions, we can immediately

deduce constraints for labelling directions with the values 1 or 0 (or equivalently with
colours, for instance white and black, respectively). Following Zimba and Penrose [6], in
this paper we assume that:

(A) No two orthogonal directions are both labelled 1 (‘white’).
(B) In any group ofn mutually orthogonal directions, not all of the directions are labelled

0 (‘black’).

In short, givenn orthogonal directions{ri}, one of them is labelled 1,v(rj ) = 1, and
the remaining ones 0,v(rk) = 0, k 6= j .

TheBKS theorem can then be formulated as follows:if n > 3, there are sets of directions
that cannot be coloured in any way consistent with rules (A) and (B). The construction of
any such set proves the theorem.
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3. Construction of some finite totally non-colourable sets for anyn > 3

A TNCSis a set that cannot be labelled inany wayusing rules (A) and (B); the set proposed
by KS [4] in dimensionn = 3 is an example of this. In this section we will generalize their
construction of aTNCS to anyRP n with n > 3.

The construction will proceed in three steps. In the first step we construct a set of
directions such that a particular election of colour for one direction determines the colour
of another one; we will use these sets in the second step to construct larger sets that are
non-colourable for a particular election of colour for one of their directions; finally, this
second type of sets will be used in the third step to construct still larger sets of directions
that are non-colourable in any way.

3.1. Construction of a definite prediction set

Definition. We shall call adefinite prediction set(DPS) a setS = {rk}fk=1 of directions such
that for at least some election of value for a particular direction† r1 of S, the value for
another directionrf of S is determined, according to rules (A) and (B).

Lemma 1.In RP n, with n > 3, there are setsS = {rk}fk=1, such thatv(r1) = 1 ⇒ v(rf ) =
1 if r1 andrf subtend an angleφ less than or equal to a certain value that we shall discuss
in this section and also in the appendix; any such set is an example ofDPS.

Proof. Let us explicitly construct one set with the above properties; to simplify
the notation we will omit normalization coefficients in some of the vectors. Let
S = {rk}f =n+7

k=1 , where r1 = (1, 0, 0, 0, . . . , 0), r2 = (0, cosα, sinα, 0, . . . , 0), r3 =
(cot φ, 1, − cot α, 0, . . . , 0), r4 = (tan φ cosecα, − sinα, cosα, 0, . . . , 0); r5, r6 and
r7 are obtained, respectively, fromr2, r3 and r4, replacing α → β, with α 6= β;
α, β 6= pπ/2, p integer; rn+5 = (sinφ, − cosφ, 0, 0, . . . , 0), rn+6 = (0, 0, 1, 0, . . . , 0),
and rn+7 = (cosφ, sinφ, 0, 0, . . . , 0). If n > 4, {ri}n+4

i=8 are directions of the type
ri = (0, 0, 0, a4, . . . , an), whereai−4 = 1 andaj = 0 if j 6= i − 4.

Figure 1 represents the directions ofS and their orthogonality relations. Each point
represents one direction, except for point{ri}n+4

i=8 which representsn − 3 directions (in the
n = 3 case this point does not exist). Points on the same straight line represent mutually
orthogonal directions. If, as we said before, we label the directions with value 1 ‘white’
and the directions with value 0 ‘black’, figure 1 representsone possible way of assigning
values (colours) to every direction ofS according to rules (A) and (B).

For r4 to be orthogonal tor7 (as represented in figure 1), it is necessary that

sinα sinβ cos(α − β) = − tan2 φ . (3)

Since the left-hand side is bound between− 1
8 and 1, then

|φ| 6 arctan(1/
√

8) . (4)

For each election ofφ consistent with this inequality,α andβ must verify (3).
With the orthogonality relations considered in figure 1,v(r1) = 1 (i.e. r1 labelled

white) ⇒ v(r2) = v(r5) = {v(ri )}n+4
i=8 = v(rn+6) = 0 by rule (A) (i.e. all these

† We will also admit asDPSs those which start with a particular election of values forseveral directions ofS,
provided that such an election can be implemented in some physical state. For example, if we prepare a system in
a quantum state describable by the vector (1, 0, 0) (that means thatv(1, 0, 0) = 1), thenv(0, 1, 0) = 0 and also,
for instance,v(0, 1, 1) = 0; therefore the electionv(0, 1, 0) = v(0, 1, 1) = 0 is a valid starting election for aDPS.
One of the reasons for including this possibility in the definition ofDPS concerns the discussion regarding which
is the ‘minimum’ DPS; see the footnote in section 4.1.
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Figure 1. One possible way of assigning colours to a DPS withn + 7 directions.

directions are black). Moreover,v(r2) = {v(ri )}n+4
i=8 = 0 ⇒ v(r3) 6= v(r4), by rules

(A) and (B). Suppose (as in figure 1)v(r3) = 1 then v(rn+5) = 0, by (A). Finally,
{v(ri )}n+6

i=8 = 0 ⇒ v(rn+7) = 1, by (B). The other possibility (not represented in figure 1)
is: v(r3) = 0 ⇒ v(r4) = 1 ⇒ v(r7) = 0, by (B) and (A), respectively. Therefore,
v(r5) = v(r7) = {v(ri )}n+4

i=8 = 0 ⇒ v(r6) = 1 ⇒ v(rn+5) = 0, by (B) and (A). Again,
{v(ri )}n+6

i=8 = 0 ⇒ v(rn+7) = 1. �
In short, using a set ofn + 7 directions we have proved that ifr1 andrf (f ≡ n + 7)

form an angle|φ| 6 arctan(1/
√

8), then v(r1) = 1 ⇒ v(rf ) = 1. This set will be a
building block for the following steps.

3.2. Construction of a partially non-colourable set

Definition. We shall call apartially non-colourable set(PNCS) a setT of directions such
that there isat least one election of valuefor some direction ofT that makes it impossible
to assign values to the rest of directions ofT according to rules (A) and (B).

Lemma 2. In RP n, with n > 3, PNCSscan be constructed by suitably ‘chaining’ several
DPSs.

Proof. Let S1 = {r1k}fk=1 be the setS of the previous section, with the particular
election (as in [4])φ = π/10 (compatible with the constraint (4) forφ). Let Sj ,
j = 2, . . . , 5, be obtained fromSj−1 by a rotation of angleπ/10 in thex–y plane (therefore,
r21 = r1f , . . . , r51 = r4f , r5f = (0, 1, 0, . . . , 0)),

rjk = Rr(j−1)k (5a)

= Rj−1r1k (5b)

whereR is the followingn × n matrix:

R =


cos(π/10) −sin(π/10) 0 . . . 0
sin(π/10) cos(π/10) 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 . (6)

Finally, let us defineT = {rjk} = {Sj }5
j=1.
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Applying the property of the setS five times,v(r11) = 1 ⇒ v(r1f )(≡ v(r21)) = 1 ⇒
v(r2f )(≡ v(r31)) = 1 ⇒ · · · ⇒ v(r5f ) = 1; but r11 andr5f are orthogonal and therefore
v(r11), v(r5f ) cannot be simultaneously 1, according to (A). Then we conclude thatT with
the initial electionv(r11) = 1 is non-colourable. �

Note that the other initial condition,v(r11) = 0, does not determine the final outcome
v(r5f ).

T containsn+38 different directions. This is so because from the number of directions
obtained by multiplying 5 (the number of setsS in T ) by n + 7 (the number of directions
in S), we have to subtract: four directions, becauserj (n+7) = r(j+1)1, j = 1, . . . , 4; another
4(n − 2) directions, becauserjk = r(j+1)k, with j = 1, . . . , 4, andk = 8, . . . , n + 4 and
n + 6; and another direction becauser11 = r5(n+5) (as can be checked using (5b)).

3.3. Construction of a totally non-colourable set

Definition. We shall call atotally non-colourable set(TNCS) a finite set of directions that
cannot be colouredin any wayaccording to rules (A) and (B).

Lemma 3.In RP n, n > 3, TNCSscan be constructed by suitably chaining severalPNCSs.

Proof. Let T1 = {r1jk} be the setT of the proof of lemma 2, which linked the orthogonal
directionsu1 = {1, 0, 0, . . . , 0} = r111 and u2 = {0, 1, 0, . . . , 0} = r15(n+7); let Ti be a
similar set linkingui with ui+1, and let us denoteU = {rijk} = {Ti}ni=1. Then

rijk = Pr(i−1)jk (7a)

= P i−1r1jk (7b)

whereP is the followingn × n matrix:

P =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

 . (8)

Using equations (5b) and (7b), we can write all the directions in the setU = {rijk}
(i = 1, . . . , n; j = 1, . . . , 5; k = 1, . . . , n + 7) as

rijk = P i−1Rj−1r11k (9)

where the directions{r11k}n+7
k=1 are those of the original ‘building block’{rk}n+7

k=1 of
section 3.1.

From the proof of lemma 2 and the identificationr211 ≡ r15(n+7) we see that the
electionv(r111) = 1 impliesv(r211) = 1, violating rule (A). However, ifv(r111) = 0 then
v(r211) = 1 can be 1 or 0. In the first case,v(r211) = 1 ⇒ v(r311) = 1 and that is, again,
impossible by (A); sov(r211) = 0. Applying the same reasoning to all the directions in
{ri11}ni=1, we conclude thatv(ri11) = 0 for all i = 1, . . . , n. But this is impossible by (B);
therefore,U is a finiteTNCS. �

U contains 39n different directions. This is so because from the number of directions
obtained by multiplyingn (the number of setsT in U ) by n + 38 (the number of
directions in anyT ), we have to subtract(n − 1)n directions, because the set of directions
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} ∈ Ti , ∀i, with i = 1, . . . , n. In particular,
for n = 3, U is the set of 117 directions considered byKS [4].
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If n > 4, in addition to the orthogonality relations used in our proof, there are
supplementary ones, but they do not interfere with the demonstration.

Starting from differentDPSs(see the appendix), the same three-step procedure will allow
us to construct otherTNCSs.

4. Taxonomy of the proofs of theBKS theorem

4.1. The work of Gleason, Specker, Kochen and Bell

What we nowadays call the Bell–Kochen–Specker theorem, previously known simply as the
Kochen–Specker theorem, was first stated by Specker [1] (although it can also be considered
a corollary of a previous theorem proposed by Gleason [12]). The elementary geometrical
arguments which proved the theorem were explicitly presented in later collaborations with
Kochen [2–4]†.

Following a suggestion made by Jauch, Bell noted the transcendence of Gleason’s
theorem as an impossibility proof ofNCHV (although Bell defended the physical plausibility
of contextual hidden variables) [5].KS’s most cited paper [4], which was published just
after (and without previous knowledge of) Bell’s own work, contains many improvements:
the theorem is formulated in terms of physical observables (instead of abstract projectors
as in [5]) for whose joint measurement they suggested a specific procedure, and the proof
involves a finiteTNCS (our notation). A more detailed comparison between [4] and [5] can
be found in [16].

As we have mentioned before,KS and Bell’s proofs of theBKS theorem are different;
moreover, ever since the publication ofKS and Bell’s papers, a great number of
simplifications and variations of the original proofs have appeared. The following is an
attempt to classify these proofs and explain how they relate to each other. For this purpose,
the distinction we have introduced in section 3—between three types of sets (DPSs, PNCSs

andTNCSs)—will be useful, since the different kinds of proofs are derived from the different
types of sets.

4.2. Proofs derived from the sets with definite predictions

4.2.1. ‘Continuum’ proofs. With DPSsand the help of other geometrical arguments, we can
obtain proofs of theBKS theorem without completing a finite non-colourable set (PNCS or
TNCS). Bell [5], for instance, uses the following geometrical argument: since the directions
can only be labelled 1 or 0, there must be two arbitrarily close directions with different
values, and that is impossible. To justify this, let us use aDPS like the one we used to
prove lemma 1 (Bell used one with 13 directions inRP 3, see the appendix); in this set, if
one direction has value 1, any other direction that forms with it an angleφ 6 arctan(1/

√
8)

must also have value 1. Belinfante [17] uses a similar argument; he considersKS’s DPSwith
eight directions inRP 3 and an argument related to the relative size of the sets of directions
with one or the other value. Also of this kind is the proof in [18]. These proofs have
been called ‘continuum proofs’ [17, 19], where the word ‘continuum’ is used because it is

† In particular, an eight-directionDPS (our notation) forn = 3, now frequently used in the literature, appears for
the first time in [2]. In its original form this set had 11 directions, but we can eliminate three since they do not
play an essential role in the argument. Clifton [13] conjectures that this eight-directionDPS is the one with the
least directions, and defies anyone to try to find a smaller one. In answer to Clifton, Vermaas [14] points out that
one of the eight directions can also be eliminated; in fact, we could eliminate one more direction without losing
physical significance (see the example in the previous footnote); Galindo [15] also points out that the set of eight
directions ‘can be improved to 6’.
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assumed that, in order to implement those geometrical arguments, a continuum of directions
are needed. The term ‘continuum proofs’ is criticized in [19].KS objected to this type of
argument and advocated ‘finite’ proofs, saying: ‘For otherwise a reasonable objection can
be raised that in fact it is not physically meaningful to assume that there are a continuum
number of quantum mechanical propositions’ [4].

4.2.2. ‘Probabilistic’ proofs. The DPSs also work for what we call here (as in [20])
‘probabilistic’ proofs of theBKS theorem. In aDPS with a particular election for the value
of the first direction, rules (A) and (B) assign certain values to some other directions; this
assignation is inconsistent with certain statistical predictions ofQM (see [21] for details).
This possibility was first suggested by Stairs [22] (usingKS’s eight-directionDPS). Recently,
Clifton [13] has proposed similar arguments (with the same eight-directionDPS, and the
13-directionDPS used by Bell); some minor mistakes in [13] have been corrected by other
authors [14, 23]). In [21] we examined anotherDPSwith 14 directions (see also the appendix)
which shows even greater discrepancies withQM, and we discussed how to obtain a simple
experimental test betweenQM andNCHV theories.

Certain proofs of the Bell theorem ‘without inequalities’ but ‘with probabilities’ [24–26]
can also be interpreted as probabilistic proofs of theBKS theorem [25].

4.3. Partially non-colourable sets and ‘state-specific’ proofs

With PNCSswe obtain contradictions between rules (A) and (B), starting from a particular
election of value for the first direction of the set. SinceRP n has spherical symmetry,
and the first direction has been chosen arbitrarily (and there must be at least one direction
with that value), the contradiction which we arrived at using aPNCS is enough to prove
BKS’s theorem (in particular, there is no need to construct aTNCS). This allows us to greatly
simplify the proof by reducing the number of directions implicated in it. This is the type
of proof presented by Friedeberg [27] (with an unspecified number of directions inRP 3),
Peres and Ron [28] (whose set of 109 directions inRP 3 containstwo PNCSs, one of 71,
and another of 40 directions), one of the authors [29] (with 38 directions inRP 3), and
Kernaghan and Peres [20] (with 13 directions inRP 8).

Certain proofs of the Bell theorem ‘without probabilities’ [30–33] and also [34, 35] (with
a recursive definition for elements of reality) admit a reading as ‘state-specific’ proofs of
the BKS theorem.

4.4. Totally non-colourable sets and ‘state-independent’ proofs

Some TNCSs, in order of publication, are those presented byKS with 117 directions in
RP 3 [4], de Obaldia, Shimony and Wittel’s with 138 directions inRP 3 [7], Conway and
Kochen’s [8] with 31 directions inRP 3, those of Peres with 33 directions inRP 3 and
24 directions inRP 4 [9], those of Penrose with 33 directions inCP 3 (three-dimensional
complex projective space) and 40 directions inCP 4 [10], Zimba and Penrose’s with 28
directions inCP 4 [6] (a subset of Penrose’s [10]), Kernaghan’s with 20 directions in
RP 4 [36] (a subset of Peres’ [9]), and Kernaghan and Peres’ with 36 directions inRP 8

[20].
TNCSs lead to what, following [20], we will call ‘state-independent’ proofs of theBKS

theorem. ‘State-specific’ proofs like [31, 32, 34, 35] can be completed to generate state-
independent proofs, involving ‘multi-dimensional’ spin operators of two or three spin-
1
2 particles [37]; see also [19, 34]. The generalization ton spin-1

2 particles of these
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state-independent arguments [38, 39], would allow us to obtainTNCSs of one-dimensional
propositions in Hilbert spaces of dimension 2n. This was presumably the way followed in
[9] and [20].

BKS’s theorem againstNCHV can also be extended [22, 40] to a more restrictive class
of hidden variables, the ‘local-non-contextual’ hidden variables (using a terminology
introduced by Shimony [41]). In the heart of such statements lies the same geometrical
argument treated in this paper.

5. Physical interpretation of the proofs

Up until now we have focused our attention on the mathematical aspects of the problem,
deliberately avoiding two physically relevant questions:

(i) What is the interpretation in terms of physical propositions of the projection operators
used in the proofs?

(ii) How can we simultaneously measure any complete set of such propositions?

The object of this section is to answer both of these questions. First, we review the
physical interpretations used in the literature for some of the proofs, and then we shall see
that, although in general the answer to the above questions is not trivial, the measurements
involved in some physical systems described by Hilbert spaces of arbitrary finite dimension
n > 3 are in principle feasible.

KS [4] pointed out that inn = 3 there is a bijective map between the set of directions
ri in RP 3 and the square of the spin component in that direction of a spin-1 particle,
S2

i . The relation isrt
i ⊗ ri = Î − h̄−2S2

i , and has the following useful property:
[S2

i , S
2
j ] = 0 ⇔ ri · rj = 0. We can measure an individualS2

i using ordinary Stern–
Gerlach devices, and a joint measurement of a complete set of these observables (a joint
measurement ofS2

x , S2
y andS2

z , for example) can be achieved using an electromagnetic field
with orthorhombic symmetry; see [4, 42]. TheKS theorem then proves that it is not possible
to assignNCHV values consistently to a finite set of observablesS2

i .
In n = 4, Penrose [6, 10] found a non-colourable set of 40 directions, at least 20 of

which can be identified with projections of the typêPi = |Si = h̄/2〉〈Si = h̄/2|, where
Si represents the spin component of a spin-3

2 particle in the directionri (these projections
have the property: [̂Pi, P̂j ] = 0 ⇔ ri · rj = 1

3).
Other non-colourable sets inn = 4 [9] and n = 8 [20] have been obtained from sets

of ‘multi-dimensional’ projectors (in contradistinction to the one-dimensional ‘propositions’
considered until now); these sets are also non-colourable according to rules similar to (A)
and (B) [9, 34, 43]. These observables are obtained as tensor products of spin components
of several spin-12 particles (two particles forn = 4 [9, 34], three forn = 8 [19, 37]). The
physical interpretation of these observables is straightforward, but the question of their joint
measurement has not yet been solved [35].

Our answer to both questions in the case of Hilbert spaces of arbitrary finite dimension is
based on two results. The first, a well known theorem of von Neumann [44] and Varadarajan
[45], asserts that given a set{Oi} of compatible observables, there exists an observableO and
a set of Borel functions{fi} such thatOi = fi(O). In particular, if{Oi} is a complete set of
compatible observables, the observableO is maximal (non-degenerate). But as Jauch points
out [46], ‘The significance of this theorem is more mathematical than practical. The reason
is that it is often easy to describe physical arrangements which measure a set of commuting
observables, while it may be practically impossible to describe such an arrangement for the
observableO of which they are all functions’.
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Swift and Wright [47] provide the second important result for our purpose: ‘Modulo
the ability to create in the laboratory any electromagnetic field consistent with Maxwell’s
equations,. . . using a generalized Stern–Gerlach apparatus, every Hermitian operator acting
on the Hilbert space of a spin-s particle can be measured and a beam of particles can be
produced in the state corresponding to any given ray in the Hilbert space’.

Both of these results provide a solution to the initial questions raised in this section.
Identifying Hn with the Hilbert space of the spin states of asingle particle of spin
s = (n−1)/2 provides us with a physical example in which any complete set of propositions
that appear in the proofs of theBKS theorem for any dimensionn > 3 can be expressed
(von Neumann and Varadarajan) in terms of a single maximal observable, which in turn
can be measured, at least in principle (Swift and Wright), using a suitable generalized
Stern–Gerlach apparatus.

6. Concluding remarks

This paper has shown a way to obtain physically meaningful (see the end of section 5),
finite, state-independent [20] proofs of theBKS theorem in any dimensionn. Our three-step
construction, which is a generalization of [4], has the advantage of being essentially the
same for anyn > 3, and fills the gap left by Zimba and Penrose’s result [6]. But on the
other hand, theTNCSs obtained using this procedure are not the most ‘economical’: for
particular dimensions,TNCSs with less than 39n directions are known (see section 4.4 and
the appendix). This point raises an interesting, although strictly mathematical problem, as
yet still unsolved: what is the minimum number of directions in each dimension,N(n),
necessary to have aTNCS in that dimension?

More interesting from the physical point of view is the way, initiated by Heywood
and Redhead [40], of applyingBKS geometrical arguments plus a locality criterion to
composite systems. More recent works by Greenberger–Horne–Zeilinger [30, 33], Mermin
[19, 31, 32, 37], Peres [34, 35], Hardy [24] and others, provide a deeper insight in this
direction.

Acknowledgments
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Appendix. Other DPSs, PNCSsand TNCSs

Figures A1 and A2 represent two other possibleDPSs in RP n such thatv(r1) = 1 ⇒
v(rf ) = 1. The conventions are the same as used in figure 1. The initial election is
v(r1) = 1 (‘white’). Figure A1 (figure A2) reflects one of the four (five) possible ways to
assign values (colours) to the remaining directions of the set.

The DPS in figure A1 hasf = n + 10 directions. Directionsr1 to r7 are the
same as in section 3.1; the expressions ofrn+8 to rn+10 coincide, respectively, with
those of rn+5 to rn+7 in section 3.1. Ifn > 4, directions{ri}n+7

i=11 coincide, respec-
tively, with {ri}n+4

i=8 in section 3.1. Three new directions appear,r8 = (0, 1, 0, 0, . . . , 0),
r9 = (sinα cosα, 0, − tanφ, 0, . . . , 0), and r10, which is obtained fromr9 with the
changeα → β, where α 6= β 6= pπ/2, with p integer. Similarly, as in section 3.1,
r9 ⊥ r10 ⇒ |φ| 6 arctan

(
1
2

)
.



1034 A Cabello and G Garc´ıa-Alcaine
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rn + 9

{ri}i =1 1
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r1 0

r6
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Figure A1. One possible way of assigning colours to a DPS withn + 10 directions.
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Figure A2. One possible way of assigning colours to a DPS withn + 13 directions.

The DPS in figure A2 has f = n + 13 directions. The form of directions
r1 to r9 coincides with those in the previous paragraph;rn+11 to rn+13 with
rn+5 to rn+7 in section 3.1, respectively. Ifn > 4, directions {ri}n+10

i=14

coincide with {ri}n+4
i=8 in section 3.1. The remaining directions arer10 =

(tanφ, 0, sinα cosα, 0, . . . , 0), r11 = (0, cosγ, sinγ, 0, . . . , 0), with α 6= β 6= γ 6= pπ/2,
with p integer; r12 = (tanφ cosecβ sec(β − γ ), − sinγ, cosγ, 0, . . . , 0), and r13 =
(cot φ sinβ cos(β − γ ), sinγ, − cosγ, 0, . . . , 0). r10 ⊥ r12 ⇒ |φ| 6 arctan(33/4/4).

In the n = 3 case, theDPS in figure 1 is the one with 10 directions proposed byKS

in [4]; the set figure A1 is the one with 13 directions proposed by Bell in [5]; and the set
in figure A2 is aDPS with 16 directions which has as a subset theDPS with 14 directions
considered in [21]†.

An interesting property of these sets is that, at the expense of just a few
more directions, the angle between the initial and final directions,r1 and rf ,
for which v(r1) = 1 ⇒ v(rf ) = 1, is greater than in theDPS of figure 1, namely
|φ| 6 arctan

(
1
2

) = 0.464 in the set of figure A1 and|φ| 6 arctan(33/4/4) = 0.518 in the

† If we eliminate the last two directions in theDPSsof figures 1, A1, A2, we have three otherDPSs(with f ′ = n+5,
n + 8 andn + 11, respectively) such thatv(r1) = 1 ⇒ v(rf ′ ) = 0.
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set of figure A2, versus|φ| 6 arctan(1/
√

8) = 0.340 in the set of figure 1. This is useful in
some of the ‘probabilistic’ versions of theBKS theorem, as it allows a greater discrepancy
with QM [13, 21].

TheseDPSscould also be used to construct otherPNCSs(and then otherTNCSs). Some
of them have a smaller number of directions than the one described in section 3.2 (and then
in 3.3). For instance, one could chain successively two of the sets in figure A1, choosing in
bothφ = arctan

(
1
2

)
(and thereforeα = −β = π/4), and then two of the sets of section 3.1,

the first withφ = (2π/5) − 2 arctan( 1
2), and the second withφ = π/10, to obtain aPNCS

with n + 34 directions (instead ofn + 38) and then aTNCS. An explicit calculation shows
that this TNCS has 96 directions ifn = 3, 136 directions ifn = 4, and 35n directions if
n > 5 (instead of 39n for any n).
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