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Abstract. The Bell-Kochen—Specker theorem against non-contextual hidden variables can be
proved by constructing a finite set of ‘totally non-colourable’ directions, as Kochen and Specker
did in a Hilbert space of dimension= 3. We generalize Kochen and Specker’s set to Hilbert
spaces of any finite dimensian> 3, in a three-step process that shows the relationship between
different kinds of proofs (‘continuum’, ‘probabilistic’, ‘state-specific’ and ‘state-independent’)
of the Bell-Kochen-Specker theorem. At the same time, this construction of a totally non-
colourable set of directions in any dimension explicitly solves the question raised by Zimba and
Penrose about the existence of such a setfer5.

1. Introduction

Kochen and Speckek$) [1-4] and, independently, Bell [5] proved what nowadays is called
the Bell-Kochen—SpeckeeKs) theorem, implying that quantum mechanicsj cannot be
‘completed’ with non-contextual hidden variablesc@v), i.e. those which assign definite
values to physical observables independently of which other compatible observables are
jointly measured. The proof of theks theorem is based in the following mathematical
result. Given a Hilbert space of dimensienone can find sets of rays that cannot be mapped
to the two-element s€D, 1} in such a way that foany subset ofn mutually orthonormal
rays, the images of — 1 of them are 0 and the image of the remaining ray is 1. Such sets
(which in this paper shall be callgdtally non-colourable setsiNCsg exist in any Hilbert
space of dimension > 3; in particular,ks [4] produced an example with 117 rays in a
real Hilbert space witlh = 3. The connection between the impossibilitynafHv and the
existence offNcsswill be briefly reviewed in section 2 of this paper.

Recently, Zimba and Penrose [6] have proved that combiningrivassin dimensions
n andm one can obtain a newncCs in dimensionn 4+ m. Since severafNCSshave been
discussed in the literature for spaces of dimension 3 [4,7-10] and 4 [6, 9, 10], Zimba and
Penrose’s theorem shows how to createssfor any dimensiork > 6 (thek = 5 case is
excluded since 5 cannot be obtained as the sum of some number of 3s and some number of
4s). In section 3 of this paper, we generalize to any finite dimensinr8 (» = 5 included)
the three-step procedure used iy [4] to construct arNCcs in n = 3. The first two steps
in this construction ofrNCSsin section 3 are related to other variants of thes theorem,
as we show in section 4; this reveals the relationship between different published proofs of
the Bks theorem and allows us to classify most of them. Finally, in section 5, we discuss
the physical meaning of the observables that appear in these proofs and the feasibility of
joint measurements of compatible sets of them. The construction of otfeesis briefly
discussed in the appendix.
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2. The Bell-Kochen—Specker theorem

In QMm, physical observables and states can be represented by self-adjoint operators in a
complex Hilbert space. Lefi be a self-adjoint operator in a complex Hilbert space of
dlmensmnn H". A can always be expressed as a linear combination of a complete
set{P; }, _, Of projectors on one-dimensional orthogonal subspaceH’ofA Yo jaib.
Physically, this means that the observaBlean, in principle, be implemented as a set of
yes—no propositions[11]) ‘one-dimensional’ mutually compatible experiments;}?_;

In QMm, the resultr(P;) of a measurement of a propositidh is one of the eigenvalues
of the projector?; (1 with multiplicity 1 and 0 with multiplicityn — 1). Since the identity
operator in H" can be decomposed into the sum of the projectors of a complete set,
I = > P;, the results of a joint measurement of all the ‘one-dimensional’ compatible
propositions of a complete séP;}’_; must verify

n

> orp)=1. 1)
i=1
Let us consider aicHv theory in which propositions?; can have predefined values
v(P;) before the corresponding measurement; gke theorem asserts that, if > 3, it is
not possible to assign valuesP;) in an individual system to all the propositio®s in such
a way that this assignment verifies:

(i) Non-contextuality: each proposition is assignesirsgle value (1 or 0) which is theame
independently of which other compatible propositions are chosen to form the complete
set{P;}!_,

(ii) The sum of the values assigned to any complete set of mutually compatible (one-
dimensional) proposition§P;};_; verify

n

Z v(P) =1. (2

i=1

Let us formulate these constraints in another way. Insittttmensional real projective
space,RP", we can identify one-dimensional projectaPs with directionsr; (which we
will represent as row vectors) on andimensional unitary sphere with opposite points
identified, by the relatior?; = r! ®r; (Wherer means transposition); commuting projectors
(compatible propositions) correspond to orthogonal directions, and a complete set of
commuting projectors, to a set aforthogonal directions.

From rules (i) and (ii) for the assignment of values to propositions, we can immediately
deduce constraints for labelling directions with the values 1 or O (or equivalently with
colours, for instance white and black, respectively). Following Zimba and Penrose [6], in
this paper we assume that:

(A) No two orthogonal directions are both labelled 1 (‘white’).
(B) In any group ofr mutually orthogonal directions, not all of the directions are labelled
0 (‘black).

In short, givenn orthogonal directiongr;}, one of them is labelled Iy(r;) = 1, and
the remaining ones Qy(ry) = 0, k # j.

TheBks theorem can then be formulated as follovifs: > 3, there are sets of directions
that cannot be coloured in any way consistent with rules (A) and TB¥ construction of
any such set proves the theorem.
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3. Construction of some finite totally non-colourable sets for anyn > 3

A TNCsis a set that cannot be labelledany wayusing rules (A) and (B); the set proposed
by ks [4] in dimensionn = 3 is an example of this. In this section we will generalize their
construction of arncsto any RP" with n > 3.

The construction will proceed in three steps. In the first step we construct a set of
directions such that a particular election of colour for one direction determines the colour
of another one; we will use these sets in the second step to construct larger sets that are
non-colourable for a particular election of colour for one of their directions; finally, this
second type of sets will be used in the third step to construct still larger sets of directions
that are non-colourable in any way.

3.1. Construction of a definite prediction set

Definition. We shall call adefinite prediction se{ppP9 a setS = {rk}-,le of directions such
that for at least some election of value for a particular diregtion of S, the value for
another directionr; of S is determined, according to rules (A) and (B).

Lemma 1.In RP", with n > 3, there are set$§ = {rk},{:l, such thaw(ry) = 1= v(ry) =
1if r, andr; subtend an angle less than or equal to a certain value that we shall discuss
in this section and also in the appendix; any such set is an examplesof

Proof. Let us explicitly construct one set with the above properties; to simplify
the notation we will omit normalization coefficients in some of the vectors. Let

S = {rk},{:{'”, wherer; = (1,0,0,0,...,0), r, = (0, cosa, sine, 0,...,0), r3 =
(cotgp, 1, —cote,O0,...,0), r4 = (tan¢cosecu, —Sina, cose, 0, ...,0); rs, r¢ and

r7 are obtained, respectively, from,, r3 and r4, replacinge — B, with a # B;
o, B # pr/2, p integer; r,.5 = (sing, —cosey, 0,0, ...,0), r,.6 = (0,0,1,0,...,0),
and r,,7 = (cos¢,sing,0,0,...,0). If n > 4, {r,-};:g are directions of the type
r; =(0,0,0,a4,...,a,), Wherea;_s =1 anda; =0if j #i —4.

Figure 1 represents the directions ®fand their orthogonality relations. Each point
represents one direction, except for poﬁﬂ,t}j';“g‘ which representa — 3 directions (in the
n = 3 case this point does not exist). Points on the same straight line represent mutually
orthogonal directions. If, as we said before, we label the directions with value 1 ‘white’
and the directions with value 0 ‘black’, figure 1 represeme possible way of assigning
values (colours) to every direction & according to rules (A) and (B).

For r, to be orthogonal ta; (as represented in figure 1), it is necessary that

sinasing coga — B) = —tarf ¢ . )
Since the left-hand side is bound betweeé and 1, then
|p| < arctarl/+/8). (4)

For each election op consistent with this inequalityy and 8 must verify (3).
With the orthogonality relations considered in figure uly;) = 1 (i.e. r; labelled
white) = v(rz) = v(rs) = {v(r)) Ty = v(r,e) = 0 by rule (A) (i.e. all these

T We will also admit asopssthose which start with a particular election of values $eweral directions of S,

provided that such an election can be implemented in some physical state. For example, if we prepare a system in
a quantum state describable by the vector (1, 0, 0) (that means(thdt 0) = 1), thenv(0, 1, 0) = 0 and also,

for instancew(0, 1, 1) = O; therefore the election(0, 1, 0) = v(0, 1, 1) = 0 is a valid starting election for ePs

One of the reasons for including this possibility in the definitioroe$ concerns the discussion regarding which

is the ‘minimum’ pPs see the footnote in section 4.1.
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Figure 1. One possible way of assigning colours to a DPS with 7 directions.

directions are black). Moreovenr(r;) = {v(r,-)}gg = 0 = v(r3) # v(ry), by rules

(A) and (B). Suppose (as in figure 1Xr3) = 1 thenv(r,.5) = 0, by (A). Finally,
{v(r,-)}y;g = 0= v(r,47) = 1, by (B). The other possibility (not represented in figure 1)
is: v(rz) = 0 = v(ry) = 1 = v(ry) = 0, by (B) and (A), respectively. Therefore,
v(rs) = v(r7) = {v(ri)}?ig = 0= v(rg) = 1 = v(ry,y5) = 0, by (B) and (A). Again,
@) = 0= v(ruy) = 1. m

In short, using a set of + 7 directions we have proved thatif andry (f =n +7)

form an angle|¢| < arctaril/+/8), thenv(r;) = 1 = wv(r;) = 1. This set will be a
building block for the following steps.

3.2. Construction of a partially non-colourable set

Definition. We shall call apartially non-colourable se{PNCS a setT of directions such
that there isat least one election of valu®r some direction ofl’ that makes it impossible
to assign values to the rest of directions7Zofaccording to rules (A) and (B).

Lemma 2.In RP", with n > 3, PNCSscan be constructed by suitably ‘chaining’ several
DPSs

Proof. Let $; = {ru)/_, be the setS of the previous section, with the particular
election (as in [4]))¢ = n/10 (compatible with the constraint (4) fap). Let S;,
Jj=2,...,5, be obtained fron§;_; by a rotation of angler/10 in thex—y plane (therefore,
T21="T1f,...,T51 =T4f, T5f = (0, 1, O,...,O)),

Tik = R’l"(jfl)k (5&)
= RIlpy, (5b)
whereR is the followingn x n matrix:
cogn/10) —sin(x/100 0 ... O
sin(m/10) cogx/100 0O ... O
R = 0 0 1 0 (6)
0 0 0o ... 1

Finally, let us definel’ = {rj} = {S; }J5=l.
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Applying the property of the sef five times,v(r11) = 1 = v(ri)(=v(r)) = 1=
v(rzp)(= v(ra) = 1= --- = v(rsy) = 1, butry; andrs, are orthogonal and therefore
v(r11), v(rss) cannot be simultaneously 1, according to (A). Then we concludeftiveith
the initial electionv(r11) = 1 is non-colourable. O

Note that the other initial condition;(r11) = 0, does not determine the final outcome
U(’I‘5f).

T containsn + 38 different directions. This is so because from the number of directions
obtained by multiplying 5 (the number of sefsin T) by n + 7 (the number of directions
in S), we have to subtract: four directions, becaugg,7 = r+11, j = 1, ..., 4; another
4(n — 2) directions, because;; = r(j+ur, With j =1,...,4, andk =8,...,n+ 4 and
n + 6; and another direction becaugg = rs+5 (as can be checked usingof$.

3.3. Construction of a totally non-colourable set

Definition. We shall call atotally non-colourable se{TnCs) a finite set of directions that
cannot be coloureth any wayaccording to rules (A) and (B).

Lemma 3.In RP", n > 3, TNCSscan be constructed by suitably chaining severatss

Proof. Let 71 = {r1;i} be the sell’ of the proof of lemma 2, which linked the orthogonal
directionsu; = {1,0,0,...,0} = ry13 anduy = {0,1,0,...,0} = ri5,47); let T; be a
similar set linkingu; with u;11, and let us denot& = {r;;} = {T;}_,. Then

rijr = Pri-ujk (79)
=P lryy (7b)
where P is the followingn x n matrix:
0 00 ..01
100 ... 00
p=]101 0 ... 0 0]. (8)
0 00..10

Using equations (3 and (®), we can write all the directions in the sét = {r;;}
i=1...,n;j=1....5k=1....,n+7)as

Tijk = PTIRITlpy 9

where the directions{riy}/* are those of the original ‘building block{r}/*! of

section 3.1.

From the proof of lemma 2 and the identificatien;; = 715,17 we see that the
electionv(r111) = 1 impliesv(rz11) = 1, violating rule (A). However, ifu(ri111) = 0 then
v(r11) = 1 can be 1 or 0. In the first case(r;11) = 1 = v(r311) = 1 and that is, again,
impossible by (A); sov(r211) = 0. Applying the same reasoning to all the directions in
{ri11)’_,, we conclude that(r;11) = 0 for alli =1, ..., n. But this is impossible by (B);
therefore,U is a finite TNCS. O

U contains 39 different directions. This is so because from the number of directions
obtained by multiplyingn (the number of sets’ in U) by n + 38 (the number of
directions in anyT’), we have to subtraat: — 1)n directions, because the set of directions
{4,0,...,0,(,1,...,0),...,(0,0,...,1)} € T;, Vi, withi = 1,...,n. In particular,
for n = 3, U is the set of 117 directions considered kg [4].
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If » > 4, in addition to the orthogonality relations used in our proof, there are
supplementary ones, but they do not interfere with the demonstration.

Starting from differenbprss(see the appendix), the same three-step procedure will allow
us to construct otherncss

4. Taxonomy of the proofs of theBks theorem

4.1. The work of Gleason, Specker, Kochen and Bell

What we nowadays call the Bell-Kochen—Specker theorem, previously known simply as the
Kochen—-Specker theorem, was first stated by Specker [1] (although it can also be considered
a corollary of a previous theorem proposed by Gleason [12]). The elementary geometrical
arguments which proved the theorem were explicitly presented in later collaborations with
Kochen [2—4}.

Following a suggestion made by Jauch, Bell noted the transcendence of Gleason’s
theorem as an impossibility proof afcHv (although Bell defended the physical plausibility
of contextual hidden variables) [5]ks's most cited paper [4], which was published just
after (and without previous knowledge of) Bell's own work, contains many improvements:
the theorem is formulated in terms of physical observables (instead of abstract projectors
as in [5]) for whose joint measurement they suggested a specific procedure, and the proof
involves a finiteTNCs (our notation). A more detailed comparison between [4] and [5] can
be found in [16].

As we have mentioned befores and Bell's proofs of theBks theorem are different;
moreover, ever since the publication & and Bell’'s papers, a great number of
simplifications and variations of the original proofs have appeared. The following is an
attempt to classify these proofs and explain how they relate to each other. For this purpose,
the distinction we have introduced in section 3—between three types ofosets KNCSs
andTncsg—will be useful, since the different kinds of proofs are derived from the different
types of sets.

4.2. Proofs derived from the sets with definite predictions

4.2.1. ‘Continuum’ proofs. With bpssand the help of other geometrical arguments, we can
obtain proofs of thesks theorem without completing a finite non-colourable setds or
TNCS). Bell [5], for instance, uses the following geometrical argument: since the directions
can only be labelled 1 or 0, there must be two arbitrarily close directions with different
values, and that is impossible. To justify this, let us usera like the one we used to
prove lemma 1 (Bell used one with 13 directionsRP3, see the appendix); in this set, if
one direction has value 1, any other direction that forms with it an apglearctar(1//8)

must also have value 1. Belinfante [17] uses a similar argument; he consgtersswith

eight directions inRP® and an argument related to the relative size of the sets of directions
with one or the other value. Also of this kind is the proof in [18]. These proofs have
been called ‘continuum proofs’ [17,19], where the word ‘continuum’ is used because it is

t In particular, an eight-directionps (our notation) forn = 3, now frequently used in the literature, appears for

the first time in [2]. In its original form this set had 11 directions, but we can eliminate three since they do not
play an essential role in the argument. Clifton [13] conjectures that this eight-direm®is the one with the

least directions, and defies anyone to try to find a smaller one. In answer to Clifton, Vermaas [14] points out that
one of the eight directions can also be eliminated; in fact, we could eliminate one more direction without losing
physical significance (see the example in the previous footnote); Galindo [15] also points out that the set of eight
directions ‘can be improved to 6'.
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assumed that, in order to implement those geometrical arguments, a continuum of directions
are needed. The term ‘continuum proofs’ is criticized in [18% objected to this type of
argument and advocated ‘finite’ proofs, saying: ‘For otherwise a reasonable objection can
be raised that in fact it is not physically meaningful to assume that there are a continuum
number of quantum mechanical propositions’ [4].

4.2.2. ‘Probabilistic’ proofs. The bpss also work for what we call here (as in [20])
‘probabilistic’ proofs of thesks theorem. In abPsSwith a particular election for the value
of the first direction, rules (A) and (B) assign certain values to some other directions; this
assignation is inconsistent with certain statistical predictiongnf(see [21] for details).
This possibility was first suggested by Stairs [22] (usisg eight-directionbps). Recently,
Clifton [13] has proposed similar arguments (with the same eight-directiksh and the
13-directionbps used by Bell); some minor mistakes in [13] have been corrected by other
authors [14, 23]). In [21] we examined anotim@swith 14 directions (see also the appendix)
which shows even greater discrepancies with and we discussed how to obtain a simple
experimental test betweeym andNCHv theories.

Certain proofs of the Bell theorem ‘without inequalities’ but ‘with probabilities’ [24—26]
can also be interpreted as probabilistic proofs ofgke theorem [25].

4.3. Partially non-colourable sets and ‘state-specific’ proofs

With pPnCSswe obtain contradictions between rules (A) and (B), starting from a particular
election of value for the first direction of the set. SinB" has spherical symmetry,
and the first direction has been chosen arbitrarily (and there must be at least one direction
with that value), the contradiction which we arrived at usingNes is enough to prove
BKS's theorem (in particular, there is no need to construtti@s). This allows us to greatly
simplify the proof by reducing the number of directions implicated in it. This is the type
of proof presented by Friedeberg [27] (with an unspecified number of directioRs),
Peres and Ron [28] (whose set of 109 directionsRif?® containstwo PNCSs one of 71,
and another of 40 directions), one of the authors [29] (with 38 direction® If), and
Kernaghan and Peres [20] (with 13 directionsRiP®).

Certain proofs of the Bell theorem ‘without probabilities’ [30-33] and also [34, 35] (with
a recursive definition for elements of reality) admit a reading as ‘state-specific’ proofs of
the BKS theorem.

4.4. Totally non-colourable sets and ‘state-independent’ proofs

SomeTNCSs in order of publication, are those presented ks/with 117 directions in
RP? [4], de Obaldia, Shimony and Wittel's with 138 directions RiP* [7], Conway and
Kochen’s [8] with 31 directions inRP?3, those of Peres with 33 directions RP® and

24 directions inRP* [9], those of Penrose with 33 directions @P? (three-dimensional
complex projective space) and 40 directionsGiP* [10], Zimba and Penrose’s with 28
directions in CP* [6] (a subset of Penrose’s [10]), Kernaghan’s with 20 directions in
RP* [36] (a subset of Peres’ [9]), and Kernaghan and Peres’ with 36 directiofsRf
[20].

TNCSslead to what, following [20], we will call ‘state-independent’ proofs of thes
theorem. ‘State-specific’ proofs like [31, 32,34, 35] can be completed to generate state-
independent proofs, involving ‘multi-dimensional’ spin operators of two or three spin-
% particles [37]; see also [19,34]. The generalizationntcspin-% particles of these
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state-independent arguments [38, 39], would allow us to oltagss of one-dimensional
propositions in Hilbert spaces of dimensioh Zhis was presumably the way followed in
[9] and [20].

BKS's theorem againsticCHv can also be extended [22,40] to a more restrictive class
of hidden variables, the ‘local-non-contextual’ hidden variables (using a terminology
introduced by Shimony [41]). In the heart of such statements lies the same geometrical
argument treated in this paper.

5. Physical interpretation of the proofs

Up until now we have focused our attention on the mathematical aspects of the problem,
deliberately avoiding two physically relevant questions:

(i) What is the interpretation in terms of physical propositions of the projection operators
used in the proofs?
(i) How can we simultaneously measure any complete set of such propositions?

The object of this section is to answer both of these questions. First, we review the
physical interpretations used in the literature for some of the proofs, and then we shall see
that, although in general the answer to the above questions is not trivial, the measurements
involved in some physical systems described by Hilbert spaces of arbitrary finite dimension
n > 3 are in principle feasible.

Ks [4] pointed out that i = 3 there is a bijective map between the set of directions
r; in RP® and the square of the spin component in that direction of a spin-1 particle,
S?. The relation isr! ® r, = I —h™25?, and has the following useful property:
[S2,5?] = 0 & = -r; = 0. We can measure an individuaf using ordinary Stern—
Gerlach devices, and a joint measurement of a complete set of these observables (a joint
measurement af?, S2 and SZ, for example) can be achieved using an electromagnetic field
with orthorhombic symmetry; see [4,42]. The theorem then proves that it is not possible
to assignNCHv values consistently to a finite set of observaigs

In n = 4, Penrose [6,10] found a non-colourable set of 40 directions, at least 20 of
which can be identified with projections of the tyge = |S; = h/2)(S; = /2|, where
S; represents the spin component of a spiparticle in the direction; (these projections
have the property: 8, ] =0< r; - 7; = 3).

Other non-colourable sets in= 4 [9] andn = 8 [20] have been obtained from sets
of ‘multi-dimensional’ projectors (in contradistinction to the one-dimensional ‘propositions’
considered until now); these sets are also non-colourable according to rules similar to (A)
and (B) [9, 34, 43]. These observables are obtained as tensor products of spin components
of several spin% particles (two particles fon = 4 [9, 34], three fom = 8 [19, 37]). The
physical interpretation of these observables is straightforward, but the question of their joint
measurement has not yet been solved [35].

Our answer to both questions in the case of Hilbert spaces of arbitrary finite dimension is
based on two results. The first, a well known theorem of von Neumann [44] and Varadarajan
[45], asserts that given a Sgb;} of compatible observables, there exists an obsen@aldad
a set of Borel function§f;} such thatO; = f;(0). In particular, if{O;} is a complete set of
compatible observables, the observaflés maximal (non-degenerate). But as Jauch points
out [46], ‘The significance of this theorem is more mathematical than practical. The reason
is that it is often easy to describe physical arrangements which measure a set of commuting
observables, while it may be practically impossible to describe such an arrangement for the
observableO of which they are all functions’.
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Swift and Wright [47] provide the second important result for our purpose: ‘Modulo
the ability to create in the laboratory any electromagnetic field consistent with Maxwell’s
equations, .. using a generalized Stern—Gerlach apparatus, every Hermitian operator acting
on the Hilbert space of a spinparticle can be measured and a beam of particles can be
produced in the state corresponding to any given ray in the Hilbert space’.

Both of these results provide a solution to the initial questions raised in this section.
Identifying H" with the Hilbert space of the spin states ofsiagle particle of spin
s = (n—1)/2 provides us with a physical example in which any complete set of propositions
that appear in the proofs of ttexs theorem for any dimension > 3 can be expressed
(von Neumann and Varadarajan) in terms of a single maximal observable, which in turn
can be measured, at least in principle (Swift and Wright), using a suitable generalized
Stern—Gerlach apparatus.

6. Concluding remarks

This paper has shown a way to obtain physically meaningful (see the end of section 5),
finite, state-independent [20] proofs of thes theorem in any dimensiom. Our three-step
construction, which is a generalization of [4], has the advantage of being essentially the
same for any: > 3, and fills the gap left by Zimba and Penrose’s result [6]. But on the
other hand, therNcss obtained using this procedure are not the most ‘economical’: for
particular dimensionsgNcsswith less than 38 directions are known (see section 4.4 and
the appendix). This point raises an interesting, although strictly mathematical problem, as
yet still unsolved: what is the minimum number of directions in each dimensin),
necessary to have®mcs in that dimension?

More interesting from the physical point of view is the way, initiated by Heywood
and Redhead [40], of applyingks geometrical arguments plus a locality criterion to
composite systems. More recent works by Greenberger—Horne—Zeilinger [30, 33], Mermin
[19, 31, 32,37], Peres [34,35], Hardy [24] and others, provide a deeper insight in this
direction.
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Appendix. Other bpPSs PNCSsand TNCSs

Figures Al and A2 represent two other possibkssin RP" such thatv(r;) = 1 =
v(ry) = 1. The conventions are the same as used in figure 1. The initial election is
v(ry) = 1 (‘white”). Figure Al (figure A2) reflects one of the four (five) possible ways to
assign values (colours) to the remaining directions of the set.

The pps in figure A1 hasf = n + 10 directions. Directiong; to r; are the
same as in section 3.1; the expressionsrfs to r,.10 coincide, respectively, with

those ofr,.s to r,,7 in section 3.1. Ifn > 4, directions{ri};'ifl coincide, respec-
tively, with {r,»};.’:g' in section 3.1. Three new directions appeey—= (0,1,0,0,...,0),
r9 = (Sinacosa, 0, —tang,0,...,0), and r19, which is obtained fromrg with the

changea — B, wherea # B8 # pm/2, with p integer. Similarly, as in section 3.1,
re L m10= || < arctar(3).
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Figure A2. One possible way of assigning colours to a DPS with 13 directions.

The DpPs in figure A2 has f =n+ 13 directions. The form of directions
ry to rg coincides with those in the previous paragraph; .11 to r,,13 with

Tne5 t0 7,47 in section 3.1, respectively. ltn > 4, directions {r;)1}
coincide with {ri}f':g in section 3.1. The remaining directions arey =

(tang, O, sine cosw, O, ..., 0), r11 = (0, cosy, siny,0,...,0), with o # B8 #£ y # pr/2,
with p integer; ri» = (tang cose@ sedB — y), —siny, cosy, 0,...,0), and r;3 =
(cotpsinBcogB — y), siny, —cosy, 0,...,0). rio L rio = |¢| < arctan3%4/4).

In the n = 3 case, thebpsin figure 1 is the one with 10 directions proposed Ky
in [4]; the set figure Al is the one with 13 directions proposed by Bell in [5]; and the set
in figure A2 is abpswith 16 directions which has as a subset tirs with 14 directions
considered in [2%].

An interesting property of these sets is that, at the expense of just a few
more directions, the angle between the initial and final directions, and r/,
for which v(r)) =1=v(ry) =1, is greater than in theops of figure 1, namely
|¢| < arctar{}) = 0.464 in the set of figure Al an¢| < arctari3¥“/4) = 0.518 in the

1 If we eliminate the last two directions in thessof figures 1, A1, A2, we have three othmrss(with f' = n+5,
n + 8 andn + 11, respectively) such that(r;) = 1= v(ry) =0.
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set of figure A2, versugp| < arctaril/+/8) = 0.340 in the set of figure 1. This is useful in
some of the ‘probabilistic’ versions of thexs theorem, as it allows a greater discrepancy
with Qm [13, 21].

Thesebpsscould also be used to construct othrercss(and then otherncsg. Some
of them have a smaller number of directions than the one described in section 3.2 (and then
in 3.3). For instance, one could chain successively two of the sets in figure Al, choosing in
both¢ = arctar(%) (and thereforer = —8 = 7 /4), and then two of the sets of section 3.1,
the first with¢ = (27/5) — 2arctam%), and the second withh = /10, to obtain aPNCS
with n + 34 directions (instead of 4+ 38) and then aNcs. An explicit calculation shows
that thisTNCs has 96 directions if: = 3, 136 directions ifn = 4, and 3% directions if
n > 5 (instead of 38 for anyn).

References

[1] Specke E P 1960Dialectica 14 239
[2] Kochen S and SpeckeéE P 1965The Theory of Models, 1963 Symp. at BerkedeyJ W Addisonet al
(Amsterdam: North-Holland) p 177
[3] Kochen S and Speck& P 1965Logic, Methodology and Philosophy of Science, 1964 Congress at Jerusalem
p 45
[4] Kochen S and Specké& P 1967J. Math. Mech.17 59
[5] Bell J S 1966Rev. Mod. Phys38 447
[6] Zimba J R and Penrose R 19%3ud. Hist. Phil. Sci24 697
[7] De Obaldia E, Shimony A and Wittel F 1988und. Phys18 1013
[8] Peres A 1993Quantum Theory: Concepts and Methd@ordrecht: Kluwer) p 114
[9] Peres A 1991). Phys. A: Math. Ger4 L175
[10] Penrose R 199Quantum Reflectionsd G F REllis and D Amati (Cambridge: Cambridge University Press)
[11] Jaud J M 1968Foundations of Quantum Mechani¢Reading, MA: Addison-Wesley) p 73
[12] Gleasm A M 1957 J. Math. Mech6 885
[13] Clifton R K 1993Am. J. Phys61 443
[14] Vermaa P E 1994Am. J. Phys62 658
[15] Galindo A 1974 Revista de la Real Academia de Ciencias Ex&itadNat., Madrid68 195
[16] Brown H R 1993Bell's Theorem and the Foundations of Modern PhysidsA van der Merwe and F Selleri
(Singapore: World Scientific) p 104
[17] Belinfanie F J 1973A Survey of Hidden-Variables Theori@dew York: Pergamon) p 63
[18] Galindo A 1976Algunas Cuestiones dadita Terica (Zaragoza: GIFT) p 3
[19] Mermin N D 1993Rev. Mod. Phys55 803
[20] Kernaghan M and Peres A 19%8ys. Lett.198A 1
[21] Cabello A and Garfia Alcaine G 1995). Phys. A: Math. Ger28 3719
[22] Stairs A 1983Phil. Sci.50578
[23] Bechmann Johansen H 199dn. J. Phys62 471
[24] Hardy L 1992Phys. Rev. Let#68 2981
[25] Clifton R K and Niemann P 199Rhys. Lett.166A 177
[26] Cabello A and Gaiia Alcaine G 1995 submitted
[27] Jammer M 1974The Philosophy of Quantum Mechanics: the Interpretations of Quantum Mechanics in
Historical PerspectiveNew York: Wiley) p 322
[28] Peres A and Ron A 1988licrophysical Reality and Quantum Formalisrol 2 ed A van der Merwe, F Selleri
and G Tarozzi (Dordrecht: Kluwer) p 115
[29] Cabello A 1994Eur. J. Phys15179
[30] Greenberger D M, HomM A and Zeilinger A 198Bell's Theorem, Quantum theory, and Conceptions of
the Universeed M Kafatos (Dordrecht: Kluwer) p 69
[31] Mermin N D 1990Phys. Today3 9
[32] Mermin N D 1990Am. J. Phys58 731
[33] Greenberger D M, Horne M A, Shimony A and Zeilinger A 198M. J. Phys58 1131
[34] Peres A 199(Phys. Lett.151A 107
[35] Peres A 199ZFound. Phys22 357
[36] Kernaghan M 1994. Phys. A: Math. Ger7 L829



1036 A Cabello and G Gana-Alcaine

[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]
(46]
(47]

Mermin N D 1990Phys. Rev. Lett65 3373

Pagonis C, RedhéaM L G andClifton R K 1991Phys. Lett.155A 441

Cereced J L 1995Found. Phys25 925

Heywood P and RedhdaM L G 1983 Found. Phys13 481

Shimony A 1984Brit. J. Phil. Sci.35 25

Reference [17], p 36

Cabello A 1995~undamental Problems in Quantum PhysexsM Ferrero and A van der Merwe (Dordrecht:
Kluwer) p 43

Von Neumann J 193Ann. Math.32 191

Varadaraja V S 1962Commun. Pure Appl. Mati5 189

Reference [11], p 103

Swift A R and Wright R 198Q). Math. Phys21 77



