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Abstract

We present a “state-independent” proof of the Bell-Kochen-Specker theorem using only 18 four-dimensional vectors,
which is a record for this kind of proof. This set of vectors contains subsets which allow us to develop a “state-specific”
proof with ten vectors (also a record) and a “probabilistic” proof with seven vectors which reflects the algebraic structure

of Hardy’s nonlocality theorem.
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The Rell-Kochen-Specker (BKS) theorem [1,2]
asserts that there is no consistent way of ascribing
non-contextual definite answers to some sets of yes-
no questions regarding an individual physical system.
There are different versions of the theorem: “state-
independent”, “state-specific”, and “probabilistic”
[3.4].

Since the original state-independent proof by
Kochen and Specker involving projectors over 117
three-dimensional real vectors was formulated, suc-
cessive demonstrations have reduced the size of the
set to only 20 four-dimensional vectors [5]; see for
instance the references in Refs. [3,4].

In this paper we present a state-independent proof
with only 18 real vectors in dimension 4. We also find
subsets with ten and seven vectors making possible
state-specific and probabilistic proofs, respectively. Fi-
nally, we show the relation between our probabilistic
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proof and a theorem by Hardy [61 on the incompati-
bility between quantum mechanics and local realistic
theories.

Given an individual physical system, let v(#) de-
note the answer (1 = yes, 0 = no) in said system to
the proposition P, (mathematically represented by the
projector |u) (u|) in a non-contextual hidden-variables
(NCHYV) theory. In order to simplify the notation we
will write # as a row vector, omit its normalization
constant, and speak indistinctly of propositions and
projectors.

The premises behind the BKS theorem can be for-
mulated as follows: ‘

(a) In an individual system each proposition Py,
has a unique answer, 0 or 1, which is independent of
which other observables are being considered jointly
(non-contextuality).

(b) For each set of one-dimensional projectors
whose sum is the unit matrix in the n-dimensional
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Hilbert space of the states of the system, the answer
to one and only one of the projectors is 1, and the
answers to the other n — 1 projectors are 0.

Following these rules, if the answer to the projector
over a given vector is 1, the answers to the projectors
over all orthogonal vectors must be zero.

Let us consider the answers to the projectors over
the following nine sets of orthogonal four-dimensional
vectors,

v(0,0,0,1) +v(0,0,1,0) +v(1,1,0,0)

+v(1,-1,0,0) = 1, (1)
v(0,0,0,1) +v(0,1,0,0) +v(1,0,1,0)
+v(1,0,-1,0) =1, (2)
v(l,-1,1,-1) +v(1,-1,-1,1) +v(1,1,0,0)
+0(0,0,1,1) = 1, (3)
v(l,-1,1,-1) +v(1,1,1,1) + v (1,0,-1,0)
+v(0,1,0,-1) =1, (4)
v(0,0,1,0) +v(0,1,0,0) +v (1,0,0,1)
+v(1,0,0,-1) =1, (5)
v(1,-1,-1,1) +v(1,1,1,1) + v (1,0,0, 1)
+v(0,1,-1,0) =1, (6)
v(1,1,-1,1) +0v(1,1,1,-1) + v (1,-1,0,0)
+v(0,0,1,1) =1, (7
v(1,1,-1,1) +v(-1,1,1,1) +v(1,0,1,0)
+v(0,1,0,-1) =1, (8)
v(1,1,1,=1) +v(-1,1,1,1) + v (1,0,0,1)
+v(0,1,-1,0) = 1. (9)

There are 18 different vectors in (1)-(9). S will de-
note this set of vectors, and P the set of the corre-
sponding propositions. Our state-independent version
of the BKS theorem can be enunciated as follows:

There is no set of answers satisfying (a) and (b)
to the set of propositions P.

The proof is straightforward: the sum of the right-
hand sides of (1)-(9) is odd, whereas the sum of the

left-hand sides is necessarily even. because each an-
swer appears twice. The previous record [5] involved
11 equations with 20 vectors, appearing either twice
or four times each.

The vectors in S can be interpreted as pure spin
states of a system of two spin-1/2 particles. The
12 vectors in (1)-(4) are factorizable (i.e., of the
form (a,0)V ® (c, d)(z)), and the corresponding
projectors are products of local observables. For
instance, in the usual Pauli representation, the (un-
normalized) vector (1,—1,0,0) represents the state
loy = +1)P @ oy = 1)@, and its corresponding
projector represents the proposition: does the observ-
able {1 have a well-defined (hidden) value +1 and
the observable (2) a well-defined (hidden) value
—1, with v (1,-1,0,0) = 1 if the answer is “yes”,
and v (1,-1,0,0) =0 otherwise?

The remaining six vectors in (5)-(9) are entan-
gled, and the corresponding propositions cannot be
factorized in terms of local observables. Each one can
be expressed in terms of a pair of the observables
50 @5?, 50 ©3®, 71 5 and 3 @D
[7,8]. For instance, (1,—1,1,1) is an eigenvector of
oV @7® and 7V @ 7 with eigenvalues —1 and
+1, respectively, and therefore can be associated with
the proposition: do the observables (" ® 7 and
oV @0 have well-defined (hidden) values —1 and
+1, respectively? Each of Egs. (5)-(8) involves a
pair of these entangled vectors, whereas (9) involves
four.

A state-independent BKS proof is said to be “crit-
ical” [9] if it is based on a set of propositions
not having any subset also making possible a state-
independent proof. Peres’ set of 24 vectors? is not
critical; it contains Kernaghan’s 20-vector critical set
[5] and 95 other critical sets of 20, plus our previ-
ous set S and 15 other critical sets of 18. From the

2 The vectors in Peres’ set [7,8] can be geometrically interpreted
as vectors along the 24 directions that join the center of a four-
dimensional hypercube (tesseract) with the (pairwise opposite)
centers of its eight three-dimensional faces (cubes), the centers
of the 24 two-dimensional intersections of them (squares), and
the 16 vertices. The sets of vectors in several other BKS “‘state-
independent” proofs have been nicknamed according to their as-
pect (Kochen-Specker’s 117-vector set [2] is also known as
the “cat’s cradle” [10], Peres’ 33-vector set [7,8] as the “quan-
tum polyhedron” [11], and Penrose’s 40-vector set [9,12] as the
“magic dodecahedron” [13]); therefore we suggest naming Peres’
24-vector set the “quantum tesseract”.
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definition of critical set there follows that none of
these 18-vector sets are contained in any of the 96
critical 20-vector sets, which probably explains why
they were not obtained previously. Peres’ set does
not contain any subset with fewer than 18 vectors
allowing for a state-independent BKS proof. The as-
sertions in this paragraph can be checked by means
of a computer program generalizing to dimension 4
the one in Ref. [8].

In Ref. [4] we proved how, by increasing the num-
ber of vectors, we can go from probabilistic demon-
strations to state-specific and then to state-independent
ones. Here we will illustrate the reverse procedure,
showing how our 18-vector set S contains subsets al-
lowing for state-specific and probabilistic BKS proofs.

Each vector in our set S is orthogonal to seven other
vectors in the set; therefore, we can prepare the system
in a state that assigns the answer 1 to the projector
over one of these vectors and the answer O to the other
seven projectors over orthogonal vectors. For instance,
if we prepare the system in the singlet state,

) = (+-) = |-+)) /V2, (10)
then, by definition,
v(0,1,-1,0) =1, (11)

and we can discard from Egs. (1)-(9) the vector
(0,1, —1,0) and those orthogonal to it, whose asso-
ciated values are zero,

v(0,0,0,1) =v(1,-1,-1,1)=v(1,1,1,1)
=v(1,0,0,-1)=v(1,1,1,-1)
=v(-1,1,1,1) =v(1,0,0,1) =0. (12)

Therefore, only seven equations with ten different vec-
tors remain,

v(0,0,1,0) +v(1,1,0,0) +v (1,-1,0,0) =1,

(13)
v(0,1,0,0) +v(1,0,1,0) +v (1,0,-1,0) =1,

(14)
v(1,-1,1,-1) +v(1,1,0,0) +v(0,0,1,1) =1,

(15)

v(l,-1,1,-1) +v(1,0,-1,0) +v (0,1,0,-1)

=1, (16)
v(0,0,1,0) +v(0,1,0,0) =1, (17)
v(]"l,_l’ 1) +U(1,"‘1,0,0) +U(0’0’11 1) = 1;

(18)
v(l1,1,-1,1) +v(1,0,1,0) +v(0,1,0,-1) = 1.
(19)

There is no way of assigning definite answers to the ten
propositions appearing in these equations. The proof
is the same as before: the sum of the right-hand sides
of (13)-(19) is odd, whereas the sum of the left-hand
sides is necessarily even, because each answer appears
twice.

Apparently this conclusion rests on the impossibil-
ity of unique answers to 10 + 8 propositions: the ten
different ones in (13)-(19), plus the one for the ini-
tial state (11) and the seven for orthogonal vectors
(12). But in fact we can justify Eqs. (13)-(19) with-
out the assistance of (12), using the following ar-
gument [3]: each subset of two or three vectors in
the left-hand sides of (13)-(19) spans a subspace
that contains the vector (0,1, —1,0) (we can check
that this vector can be expressed as a linear combi-
nation of the ones in each subset); therefore, even
if the sums of the corresponding projectors are not
the 4 x 4 unit matrix, the system is in an eigen-
state, with eigenvalue 1, of each sum of projectors,
and the sums of the corresponding answers must be
1. In consequence, our state-specific proof uses only
ten vectors (or 10 (+1), if we also count the initial
state). The previous record [3] involved seven equa-
tions with 13 (or 13 (+1), if we include the initial
state) different eight-dimensional vectors, appearing
either twice or four times each. Note nevertheless that
the state-specific proof in Ref. [3] has the desirable
property of using only factorizable vectors (i.e., of the
form (a,b) "V @ (¢,d)® @ (e, £)®), as opposed to
our state-specific and state-independent proofs, or the
state-independent one in Ref. [5].

Our state-specific BKS theorem cannot be inter-
preted as a contradiction between quantum mechanics
(QM in the following) and NCHV in terms of local
measurements, because, although it is possible to pre-
pare the system in an entangled state (the singlet, in
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our previous choice), we cannot eliminate the remain-
ing five non-factorizable propositions, and still reach a
contradiction. For instance, our previous choice (13)-
(19) contains the entangled state (1,1,—1,1), and
the answer to the corresponding propositions cannot
be determined by means of a local measurement on
particle 1 and a local measurement on particle 2.

We will now obtain a probabilistic version of the
BKS theorem using only factorizable projectors, in-
terpretable in terms of local measurements, and show-
ing the incompatibility between QM and local realis-
tic theories. Other correspondences between the BKS
and Bell’s theorems have been discussed in the litera-
ture [14].

Suppose we prepare (“preselect”) two spin-1/2
particles in the entangled (but no “maximally entan-
gled”) Hardy state [6],

In) = (4+) = [+=) = |=+)) /V3. (20)
Then, by definition,
v(l,-1,-1,0) =1. (21)

The answers to the projectors over any vector orthog-
onal to3 (1,—1,—1,0), must be zero; in particular,
v(0,0,0,1) =v(1,1,0,0) =v(1,0,1,0) =0.

(22)

Let us assume that a suhsequent measurement ( “post-
selection™) finds the system in the state

o) = oy =+1)P @ oy = +1)P (23)
(this is possible because (¢ |) # 0); then,
v(1,1,1,1) = 1. (24)

In the individual systems postselected in state (23),
the answer to all propositions over vectors orthogonal
to (1,1,1,1) is 0; in particular

v(1,-1,0,0) =v(1,0,-1,0) =0. (25)
Replacing (22) and (25) in (1) and (2) leads to
v(0,1,0,0) =v(0,0,1,0) = 1. (26)

3 This vector does not belong to S nor to Peres’ 24-vector set.
It can be geometrically interpreted as the direction that joins the
centers of a pair of opposite edges of a tesseract (see footnote
2); the other 15 directions joining the centers of the remaining
opposite edges also represent Hardy states [6].

But (0,1,0,0) and (0,0,1,0) are orthogonal, and
therefore the answers to the corresponding proposi-
tions cannot both be 1: we have reached a contradic-
tion.

This probabilistic demonstration of the BKS theo-
rem uses 7 (+2) vectors (seven in (22), (25), (26)
plus the states 7 and ¢). The term “probabilistic” fol-
lows from the fact that preparing the system in the
initial state 5 (i.e., preselecting 1) gives only a non-
zero probability of finding the system in the final state
¢ (i.e., of postselecting ¢), not a certainty.

Now we are going to show how this result relates
to Hardy’s nonlocality theorem [6]. Note that all the
vectors involved in the previous proof are factorizable,
with the exception of the initial state %. The answer to
a factorizable proposition can be expressed in terms
of the answers to the corresponding factors,

v[(a.D)V® (c,d)P] =1

s v(ab)P=v(c,d)?® =1, 27
v [(a,0)P @ (c,d)P] =0
s (@b xv(c,d)®=0. (28)

In particular, if we preselect the state 7,
v(l,-1,-1,0)=1 = 0v(1,1,0,0)=0
s (1,00 xu(1, )P =0. (29)

Similarly, postselecting ¢ (ie., v[(1,DP ®
(1,[111)®@] = 1) implies, using (27),

v(1,HV =1, (30)
v(1,1)P =1, (31)
Then, (29) and (31) imply

v (1,00 =0. (32)

If we use premises (a) and (b) in the two-dimensional
spin space of the first particle, from (32) we conclude
that

v (0, )M =1, (33)

The answers (21), (31), (33) correspond in QM
terms to the following value for the conditional prob-
ability of finding o{") = —1 in a system prepared in
the state 7, if 7P = +1,

Pa(oV = 1[0 = +1) = 1. (34
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If we interchange the roles of particles 1 and 2, a
similar reasoning leads us to

Py(cP=-1|oP=+1)=1. (35)

Eq. (21) and the first part of (22) (v (0,0,0,1) =0)
translate into

P, (e =-1,6@ =-1) =0. (36)

Finally, the fact that the system can be postselected in
the state ¢, used to obtain (24), means that

P, (ol =+1,0? = +1) > 0. (37)
Egs. (34)-(37) translate into QM terms the set of

answers used in our probabilistic BKS theorem. If we
assume that particles 1 and 2 are localized in two
space-like separated regions (this assumption was not
necessary for the BKS theorem), Eqs. (34)-(37) are
just those in Hardy’s nonlocality theorem, which we
can summarize as follows:

Let us consider a system of two space-like separated
particles prepared in the spin state 77, and suppose that
we accept EPR’s sufficient condition for existence of
elements of reality [15]. In those individual systems
in which o{?) = +1, and {1 = +1 (a condition that
can be fulfilled because of (37)), Egs. (34), (35)
imply that we can jointly infer two elements of reality,
o'gl) = —-1and 0-52) = —1. But these results can never
be obtained in a joint measurement in the state 7,
because of (36): QM and elements of reality are not
compatible, q.e.d.

We could also establish the inverse correspondence:
Eqgs. (34)-(37) in Hardy’s theorem can be trans-
lated into a set of definite answers to propositions that
proves our probabilistic BKS theorem; we omit the
details for brevity.

In summary: we have found sets of four-dimensional
real vectors that allow us to develop state-independent,
state-specific and probabilistic BKS proofs, illustrat-
ing the relations between these three versions of the
theorem. In the first two cases, our sets are the most
economical yet, in terms of vectors used, in any di-
mension. On the other hand, the probabilistic proof
shows the same kind of contradiction as Hardy’s
theorem, and suggest an algebraic reading of it.

We would like to thank Gabriel Alvarez and José
Luis Cereceda for reading this paper and making valu-
able comments.
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