Erratum: Two qubits of a W state violate Bell’s inequality beyond Cirel’son’s bound

Adán Cabello*
Departamento de Física Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain
(Received 3 December 2002; published 10 February 2003)

DOI: 10.1103/PhysRevA.67.029901 PACS number(s): 03.65.Ud, 03.65.Ta, 99.10.Cd

The reasoning leading to Eq. (16) is incorrect. The correct reasoning is the following: Qubit k is defined as the one in which, if we had measured σ_z, we would have found the result 1. The other two qubits are denoted i and j. For the W state (2),

$$P(X_2 = X_3 | Z_1 = 1) = P(X_2 = -X_3 | Z_1 = 1),$$

$$P(X_1 = X_3 | Z_2 = 1) = P(X_1 = -X_3 | Z_2 = 1),$$

$$P(X_1 = X_2 | Z_3 = 1) = P(X_1 = -X_2 | Z_3 = 1),$$

where $P(X_2 = X_3 | Z_1 = 1)$ is the conditional probability of X_2 and X_3 having the same result, given that the result of Z_1 is 1. Therefore, irrespective of whether i and j are qubits 2 and 3, or 1 and 3, or 1 and 2, we conclude that

$$C(X_1, X_j) = 0.$$ (4)

I thank Daniel Collins for pointing out this mistake.

*Electronic address: adan@us.es