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Greenberger-Horne-Zeilinger-like proof of Bell’s theorem involving observers
who do not share a reference frame

Adán Cabello*
Departamento de Fı´sica Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain

~Received 12 June 2003; published 9 October 2003!

Vaidman described how a team of three players, each of them isolated in a remote booth, could use a
three-qubit Greenberger-Horne-Zeilinger state to always win a game which would be impossible to always win
without quantum resources. However, Vaidman’s method requires all three players to share a common refer-
ence frame; it does not work if the adversary is allowed to disorientate one player. Here we show how to
always win the game, even if the players do not share any reference frame. The introduced method uses a
12-qubit state which is invariant under any transformationRa^ Rb^ Rc ~whereRa5Ua^ Ua^ Ua^ Ua , where
U j is a unitary operation on a single qubit! and requires only single-qubit measurements. A number of further
applications of this 12-qubit state are described.

DOI: 10.1103/PhysRevA.68.042104 PACS number~s!: 03.65.Ud, 03.65.Ta
a
z
o

33
tw
ig
ou

wo
el
u
n
si
et
th
ed
lly

ed

f
t
ic
in

t-
e
d
m
la

m
o

ye
th
b

dis-
nce
ays
he

he
e

the
re-

ust
d of
ec.
ow

om-
ken
r is

is

ked

es-

ical
an
ws
ys

win
I. INTRODUCTION

In 1991, after months of patient ‘‘work’’ and based on
study of 20 000 events, a gang of players reached an ama
conclusion: in eight roulette wheels of the Gran Casino
Madrid, six numbers (1 and its two neighbors, 20 and
and the opposite number in the roulette wheel, 4, and its
neighbors, 19 and 21) occurred with an unexpectedly h
frequency~assuming that each of the 37 numbers of the r
lette wheel appears with the same frequency!, while four
numbers (11, 12, 28, and 36) rarely occurred. The gang
a large amount of money by betting in these roulette whe
The casino never realized where the problem was, never
derstood the ‘‘method’’ used by the gang but, after ma
attempts, found its own method to defeat the gang: the ca
started to regularly exchange the pieces of the roul
wheels and switch the numbers’ positions. This altered
roulette wheels’ original ‘‘defects’’ and the gang stopp
winning @1#. The moral is that any winning strategy usua
has an antidote.

In 1999, Vaidman@2# converted Mermin’s@3,4# version of
the proof of Bell’s theorem without inequalities discover
by Greenberger, Horne, and Zeilinger~GHZ! @5–7# into a
game involving a team~a gang! of three players, each o
them completely isolated in a booth, and an opponen~a
casino!. Under some assumptions, and using only class
resources, the maximum probability for the team to w
Vaidman’s game is 75%~thus a casino gets profit by exploi
ing the remaining 25%!. Thanks to the fact that rules of th
game do not forbid the players to share qubits prepare
some entangled state, there is a method which allows the
always win the game. However, there is a simple manipu
tion that nullifies the quantum advantage. A hidden assu
tion of the method is that all three players share a comm
reference frame. If the casino disorientates one of the pla
so that all three of them do not share a reference frame,
the advantage of the method is lost. The term ‘‘unspeaka
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information’’ was coined by Peres and Scudo@8# to designate
information that cannot be represented by a sequence of
crete symbols, such as a direction in space or a refere
frame. In this paper we show that there is a method to alw
win Vaidman’s game without it being necessary that t
players share unspeakable information.

In Sec. II we review the rules of Vaidman’s game and t
original quantum method for always winning. In Sec. III w
propose a quantum method for always winning, even if
players do not share any reference frame. This method
quires more qubits, and thus one might think that it m
require collective measurements on several qubits, instea
single-qubit measurements, as in the original method; in S
IV we shall see that this is not the case. In Sec. V we sh
other applications of the method.

II. VAIDMAN’S GAME

A. Rules

Vaidman proposed the following game@2#. Consider a
team of three players, who are allowed to agree on a c
mon strategy and make any preparation before they are ta
to three remote and isolated booths. Then, each playe
asked one of the two possible questions: ‘‘What isZ?’’ or
‘‘What is X?’’ Each player must give an answer which
limited to one of only two possibilities: ‘‘0’’ or ‘‘1.’’ One of
the rules of the game is that either all three players are as
theZ question or only one player is asked theZ question and
the other two are asked theX question. The team wins if the
number of 0 answers is odd~one or three! in the case of three
Z questions, and is even~zero or two! in the case of oneZ
and twoX questions.

Assuming that the four possible combinations of qu
tions ~i.e., Z1 ,Z2 ,Z3 ; Z1 ,X2 ,X3 ; X1 ,Z2 ,X3; and
X1 ,X2 ,Z3) are asked with the same frequency, no class
protocol allows the players to win the game in more th
75% of the runs. For instance, a simple strategy that allo
them to win in 75% of the runs is that each player alwa
answers 1 to theZ question and 0 to theX question. How-
ever, quantum mechanics provides a method to always
the game.
©2003 The American Physical Society04-1
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B. GHZ-assisted quantum always winning strategy

The method for always winning is the following. Befor
entering the isolated booths, the players prepare a large n
ber of three-qubit systems in the GHZ state@3–7,9#:

uGHZ&5
1

A2
~ uy0 ,y0 ,y0&1uy1 ,y1 ,y1&). ~1!

Here uy0 ,y0 ,y0&5uy0& ^ uy0& ^ uy0&, where uy0&5(1/A2)
3(uz0&1 i uz1&) and uy1&5(1/A2)(uz0&2 i uz1&), uz0&5(0

1)
anduz1&5(1

0). Then, for each three-qubit system, each of
players takes one of the qubits with him. In case a playe
asked ‘‘What isZ?,’’ he performs a measurement on his qu
of the observable represented by

Z5uz0&^z0u2uz1&^z1u, ~2!

and gives the answer 0, if the outcome corresponds touz0&,
or the answer 1, if the outcome corresponds touz1&.

In case a player is asked ‘‘What isX?,’’ he performs a
measurement of the observable represented by

X5ux0&^x0u2ux1&^x1u, ~3!

where ux0&5(1/A2)(uz0&1uz1&) and ux1&5(1/A2)(uz0&
2uz1&), and gives the answer 0, if the outcome correspo
to ux0&, or the answer 1, if the outcome corresponds toux1&.

The protocol described above allows the team to alw
win the game, because the state defined in Eq.~1! can also be
expressed in the following four forms:

uGHZ&5 1
2 ~ uz0 ,z0 ,z0&2uz0 ,z1 ,z1&2uz1 ,z0 ,z1&

2uz1 ,z1 ,z0&) ~4!

5 1
2 ~ uz0 ,x0 ,x1&1uz0 ,x1 ,x0&2uz1 ,x0 ,x0&

1uz1 ,x1 ,x1&) ~5!

5 1
2 ~ ux0 ,z0 ,x1&2ux0 ,z1 ,x0&1ux1 ,z0 ,x0&

1ux1 ,z1 ,x1&) ~6!

5 1
2 ~2ux0 ,x0 ,z1&1ux0 ,x1 ,z0&1ux1 ,x0 ,z0&

1ux1 ,x1 ,z1&). ~7!

It can be inferred from Eq.~4! that if all players measureZ,
then either all of them will obtainz0, or one will obtainz0
and the other two will obtainz1. Analogously, it can be
inferred from Eqs.~5!–~7! that, if one player measuresZ and
the other two measureX, then either all of them will obtain
1, or one will obtain 1 and the other two will obtain 0.

III. QUANTUM ALWAYS WINNING STRATEGY
WITHOUT UNSPEAKABLE INFORMATION

The method described above has one drawback tha
adversary could use to keep the players from always w
ning. If the qubits are spin states of spin-1

2 particles, then the
observablesZ andX can be identified, respectively, with th
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spin components along two orthogonal directionsz and x.
Such directions are determined by the preparation of
GHZ state~1!. This method requires all players to share t
directionsz andx for the duration of the game. However,
the opponent finds a way to confuse one of them, then
local measurements performed by the players will not
adequately correlated and thus the advantage provided b
GHZ state is lost.

Fortunately, there is a method which is still valid even
the players do not share two directions. Now, before ente
the booths, the players prepare a large number of 12-q
systems in the state

uC&5
1

A2
~ uh0 ,h0 ,h0&1uh1 ,h1 ,h1&), ~8!

where uh0&5(1/A2)(uf0&1 i uf1&) and uh1&5(1/A2)(uf0&
2 i uf1&), whereuf0& and uf1& are the four-qubit states

uf0&5
1

2
~ uz0 ,z1 ,z0 ,z1&2uz0 ,z1 ,z1 ,z0&2uz1 ,z0 ,z0 ,z1&

1uz1 ,z0 ,z1 ,z0&), ~9!

uf1&5
1

2A3
~2uz0 ,z0 ,z1 ,z1&2uz0 ,z1 ,z0 ,z1&2uz0 ,z1 ,z1 ,z0&

2uz1 ,z0 ,z0 ,z1&2uz1 ,z0 ,z1 ,z0&12uz1 ,z1 ,z0 ,z0&),

~10!

introduced by Kempeet al. @10# in the context of
decoherence-free fault-tolerant universal quantum comp
tion @11,12#, and recently obtained experimentally usin
parametric down-converted polarization-entangled phot
@13#.

Then, for each 12-qubit system, the first player takes
first four qubits with him, the second player takes the ne
four qubits, and the third player takes the last four qubits.
case a player is asked ‘‘What isZ?,’’ he performs on his four
qubits a measurement of the observable represented by

Z5uf0&^f0u2uf1&^f1u. ~11!

The observableZ hasthreepossible outcomes~correspond-
ing to its three eigenvalues21, 0, and 1). However, if the
qubits have been prepared in the stateuC& given in Eq.~8!,
then only two outcomes can occur~those corresponding to
the eigenvalues21 and 1). Measuring the observableZ on
a system prepared in the stateuC& is then equivalent to reli-
ably discriminating between the statesuf0& and uf1&. The
player gives the answer 0, if the outcome corresponds
uf0&, and the answer 1, if the outcome corresponds touf1&.

In case a player is asked ‘‘What isX?,’’ he performs a
measurement of the observable represented by

X5uc0&^c0u2uc1&^c1u, ~12!

where

uc0&5
1

A2
~ uf0&1uf1&), ~13!
4-2
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uc1&5
1

A2
~ uf0&2uf1&). ~14!

MeasuringX on a system prepared in the stateuC& is equiva-
lent to reliably discriminating betweenuc0& and uc1&. The
player gives the answer 0, if the outcome corresponds
uc0&, or the answer 1, if the outcome corresponds touc1&.

The stateuC& can be expressed in the following fou
forms:

uC&5 1
2 ~ uf0 ,f0 ,f0&2uf0 ,f1 ,f1&2uf1 ,f0 ,f1&

2uf1 ,f1 ,f0&) ~15!

5 1
2 ~ uf0 ,c0 ,c1&1uf0 ,c1 ,c0&2uf1 ,c0 ,c0&

1uf1 ,c1 ,c1&) ~16!

5 1
2 ~ uc0 ,f0 ,c1&2uc0 ,f1 ,c0&1uc1 ,f0 ,c0&

1uc1 ,f1 ,c1&) ~17!

5 1
2 ~2uc0 ,c0 ,f1&1uc0 ,c1 ,f0&1uc1 ,c0 ,f0&

1uc1 ,c1 ,f1&). ~18!

From Eq. ~15!, it can be inferred that if the three playe
perform measurements to discriminate betweenuf0& and
uf1&, then they will always obtain an odd number of sta
uf0&. From Eqs.~16! to ~18!, it can be inferred that if two
players perform measurements to discriminate betweenuc0&
and uc1&, and the third performs measurements to discrim
nate betweenuf0& anduf1&, then they will always obtain an
odd number of statesuc1& and uf1&.

For our purposes, the fundamental property of the s
uC& is that it is invariant under any transformationRa^ Rb
^ Rc ~whereRa5Ua^ Ua^ Ua^ Ua , whereU j is a unitary
operation on a single qubit!. This property derives from the
fact that uf0& and uf1& and any linear combination thereo
~such asuc0& and uc1&) are invariant under the tensor pro
uct of four equal unitary operators,U j ^ U j ^ U j ^ U j . This
means that the stateuC& is invariant under local rotations
and the local observablesZ and X are invariant underU j
^ U j ^ U j ^ U j and thus under rotations of the local setu
@14#. Therefore, expressions~15!–~18! remain unchanged af
ter local rotations. This implies that even if the adversa
disorientates one or more players, the outcomes of the l
measurements still possess the desired correlations, bec
the involved local measurements are rotationally invarian

IV. MEASURING THE OBSERVABLES BY USING
SINGLE-QUBIT MEASUREMENTS

One might think that measuringZ ~i.e., distinguishing
betweenuf0& and uf1&) andX ~i.e., distinguishing between
uc0& and uc1&) could require collective measurements
each player’s four qubits. However, as in the origin
method, only single-qubit measurements are needed.
04210
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A. Distinguishing betweenzf0‹ and zf1‹

The statesuf0& and uf1& are reliably distinguishable us
ing single-qubit measurements because they can be
pressed as

uf0&5
1

2
~2uz0 ,z1 ,x0 ,x1&1uz0 ,z1 ,x1 ,x0&1uz1 ,z0 ,x0 ,x1&

2uz1 ,z0 ,x1 ,x0&), ~19!

uf1&5
1

2A3
~ uz0 ,z0 ,x0 ,x0&2uz0 ,z0 ,x0 ,x1&2uz0 ,z0 ,x1 ,x0&

1uz0 ,z0 ,x1 ,x1&2uz0 ,z1 ,x0 ,x0&1uz0 ,z1 ,x1 ,x1&

2uz1 ,z0 ,x0 ,x0&1uz1 ,z0 ,x1 ,x1&1uz1 ,z1 ,x0 ,x0&

1uz1 ,z1 ,x0 ,x1&1uz1 ,z1 ,x1 ,x0&1uz1 ,z1 ,x1 ,x1&).

~20!

Therefore, if the local measurements areZ1 ~i.e., the compo-
nent along thez direction of the first qubit!, Z2 ~i.e., the
component along thez direction of the second qubit!, X3

~i.e., the component along thex direction of the third qubit!,
and X4 ~i.e., the component along thex direction of the
fourth qubit! then, among the 16 possible outcomes, 4 oc
~with equal probability! only if the qubits were in the state
uf0&, and the other 12 outcomes occur~with equal probabil-
ity! only if the qubits were in the stateuf1&. Note that nowz
andx are not fixed directions, but any two orthogonal dire
tions instead. This scheme to distinguish betweenuf0& and
uf1& using only single-qubit measurements has recently b
experimentally implemented@13#.

B. Distinguishing betweenzc0‹ and zc1‹

The statesuc0& and uc1& are not distinguishable usin
fixedsingle-qubit measurements. However, any two ortho
nal states are distinguishable by single-qubit measurem
assisted by classical communication@15#. This means that
there is asequenceof single-qubit measurements which a
lows us to reliably distinguish betweenuc0& anduc1&. In this
sequence, what is measured on one qubit could depen
the result of a prior measurement on a different qubit.
sequence of single-qubit measurements which allows u
reliably distinguish betweenuc0& and uc1& follows from the
fact that these states can be expressed as

uc0&5auz0 ,x0 ,a0 ,c0&1buz0 ,x0 ,a1 ,d1&1auz0 ,x1 ,b0 ,e0&

1buz0 ,x1 ,b1 , f 1&1buz1 ,x0 ,b0 , f 0&

1auz1 ,x0 ,b1 ,e1&2buz1 ,x1 ,a0 ,d0&

1auz1 ,x1 ,a1 ,c1&, ~21!
4-3
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uc1&5buz0 ,x0 ,a0 ,c1&1auz0 ,x0 ,a1 ,d0&1buz0 ,x1 ,b0 ,e1&

2auz0 ,x1 ,b1 , f 0&1auz1 ,x0 ,b0 , f 1&

2buz1 ,x0 ,b1 ,e0&1auz1 ,x1 ,a0 ,d1&

2buz1 ,x1 ,a1 ,c0&, ~22!

where

a5
A31A6

2A6
, ~23!

b5
A32A6

2A6
, ~24!

and

ua0&5puz0&1quz1&, ua1&5quz0&2puz1&, ~25!

ub0&52puz0&1quz1&, ub1&5quz0&1puz1&, ~26!

uc0&52r uz0&1suz1&, uc1&52suz0&2r uz1&, ~27!

ud0&5tuz0&1uuz1&, ud1&5uuz0&2tuz1&, ~28!

ue0&5r uz0&1suz1&, ue1&5suz0&2r uz1&, ~29!

u f 0&52tuz0&1uuz1&, u f 1&5uuz0&1tuz1&, ~30!

where

p5
A22A2

2
, ~31!

q5
A21A2

2
, ~32!

r 5
~31A3!q

12a
, ~33!

s5
~32A3!q

12b
, ~34!

t5
~32A3!p

12a
, ~35!

u5
~31A3!p

12b
. ~36!

Note that, for instance, the stateub0& is not orthogonal to
ua0& or ua1&. The comparison between expressions~21! and
~22! leads us to a simple protocol for reliably distinguishi
betweenuc0& anduc1& using a sequence of single-qubit me
surements. This protocol is shown in Fig. 1.
04210
V. OTHER APPLICATIONS

A. No-hidden-variables theorems

Vaidman’s aim was to reformulate the GHZ proof
Bell’s theorem into a game ‘‘which can convert laymen in
admirers of quantum theory’’ by showing its ‘‘miraculou
power’’ @2#. One obvious application of the method for a
ways winning Vaidman’s game introduced in this paper
thus to prove Bell’s theorem without inequalities when t
local observers do not share any reference frame. Accord
to Eqs.~15!–~18!, one can predict with certainty the value o
eitherZj or Xj ~with j 51,2,3) from the results of spacelik
separated measurements on the other two four-qubit syst
Therefore, for anyj, Zj andXj can be considered ‘‘element
of reality,’’ as defined by Einstein, Podolsky, and Rosen@16#.
However, it is impossible to assign predefined values, eit
0 or 1, to the six observablesZj andXj satisfying all pre-
dictions given by Eqs.~15!–~18!.

This proof is of interest, since it shows that a perfe
alignment between the source of entangled states and
local detectors does not play a fundamental role in Be
theorem. For instance, in 1988 Yuval Ne’eman argued t
the answer to the puzzle posed by Bell’s theorem was to
found in the implicit assumption that the detectors we
aligned. Ne’eman apparently believed that the two detec
were connected through the space-time affine connectio
general relativity@17#. A proof of Bell’s theorem without
inequalities and without alignments involving two observe
eight-qubit states, and only fixed single-qubit measureme
~i.e., without requiring a protocol like the one in Fig. 1! has
been introduced in Ref.@18#. The interest of the proof of
Bell’s theorem without inequalities for the stateuC&, given
in Eq. ~8!, and the local measurements ofZ andX, defined
respectively in Eqs.~11! and ~12!, is that such a proof is
valid for 100% of the events prepared in the stateuC&, in-

FIG. 1. Protocol for reliably distinguishinguc0& and uc1& using
a sequence of single-qubit measurements. Example: first, measZ
on qubit 1 andX on qubit 2. If the results are, respectively,z0 and
x1, then measure the observable represented byB5ub0&^b0u
2ub1&^b1u on qubit 3. If the result isb0, then measure the observ
ableE5ue0&^e0u2ue1&^e1u on qubit 4. If the result ise1, then the
state isuc1&.
4-4
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stead of only for a small~8%! subset of the events in Re
@18#.

Other interesting application of the stateuC& and the local
observablesZ andX is the Kochen-Specker~KS! theorem of
impossibility of noncontextual hidden variables in quantu
mechanics@19#. Mermin showed how the GHZ proof o
Bell’s theorem could be converted into a proof of the K
theorem@20,21#. Analogously, the proof of Bell’s theorem
using uC&, Z, andX could be converted into a~subspace-
dependent! proof of the KS theorem, valid even for measur
ments along imperfectly defined directions. This is of int
est, because it sheds some extra light on a recent de
about whether or not the KS theorem is still valid when id
measurements are replaced by imperfect measurements@22–
30#.

B. Reducing the communication complexity
with prior entanglement

Vaidman’s game can also be seen as a scenario in w
the communication complexity of a certain task can be
duced if the players are allowed to share some prior
tangled state. In Vaidman’s game the task is to always
the game. Without quantum resources, this task require
least one of the players to send 1 bit to other player after
question (Z or X) has been posed to him. However, if the
initially share a GHZ state, the task does not require a
transmission of classical information between the players

A similar example of reduction of the communicatio
complexity needed for a task if the parties share a GHZ s
was discovered by Cleve and Buhrman@31#, reformulated by
Buhrmanet al. @32#, and attractively presented by Steane a
van Dam@33# as follows: a secret integer numbernA1nB
1nC of apples, wherenj50, 1

2 , 1, or 3
2 , is distributed

among three players, Alice, Bob, and Charlie, of the sa
team. Each of them is in an isolated booth. The team win
one of the players, Alice, can ascertain whether the t
number of distributed apples is even or odd. The only co
munication allowed is that each of the other two players
send 1 bit to Alice after seeing the number of apples eac
them got. Assuming that each of the 32 possible variation
apples occurs with the same probability and using only c
sical communication, Alice cannot guess the correct ans
in more than 75% of the cases. However, the players
always win if each has a qubit of a trio prepared in the st
uGHZ& given in Eq.~1!, and each playerj applies to his qubit
the rotation

R~nj !5uy0&^y0u1ein jpuy1&^y1u, ~37!

wherenj is his number of apples, and then measures the
of his qubit along thez direction. Finally, Bob and Charlie
send their outcomes to Alice. The success of the metho
guaranteed by the following property:

R~nA! ^ R~nB! ^ R~nC!uGHZ&

5H uGHZ& if nA1nB1nC is even

uGHZ'& if nA1nB1nC is odd,
~38!
04210
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where

uGHZ'&5
i

2
~ uz0 ,z0 ,z1&1uz0 ,z1 ,z0&1uz1 ,z0 ,z0&

2uz1 ,z1 ,z1&), ~39!

can be reliably distinguished fromuGHZ& by local measure-
ments along thez direction. This method assumes that a
playersshare a reference frameduring the protocol. How-
ever, such an assumption is not needed if each player
places his qubit belonging to a trio prepared inuGHZ& by
four qubits belonging to a dozen prepared inuC&. The local
operations@i.e., the rotationR(nj ) and the measuremen
along thez direction# are replaced by a protocol, using on
single-qubit measurements, for reliably distinguishing b
tween two four-particle states which are invariant underU j
^ U j ^ U j ^ U j .

C. Quantum cryptography

Other application in which the use of GHZ states provid
advantages over any classical protocol is the secret sha
scenario@34–37#: Alice wishes to convey a cryptographi
key to Bob and Charlie in such a way that they both can r
it only if they cooperate. In addition, they wish to preve
any eavesdropper from acquiring any information witho
being detected. It is assumed that the players share no p
ous secret information nor any secure classical channel
although it is not usually explicitly stated, it is assumed th
all three partiesshare a reference frame. Once more, such a
requirement can be removed if we replace the GHZ s
with the stateuC&, and the measurements ofZ and X with
measurements ofZ andX.

D. Conclusion

To sum up, the interest in rotationally invariant states~i.e.,
those invariant underU ^ •••^ U, whereU is a unitary op-
eration! goes beyond their use for decoherence-free fa
tolerant universal quantum computation@10–13#, solving the
Byzantine agreement problem@38–40#, and transmitting
classical and quantum information between parties who
not share a reference frame@13,41#. Entangledrotationally
invariant states~i.e., those invariant underUA^ •••^ UA^

•••^ UN^ •••^ UN), like the stateuC& given in Eq.~8!, can
be used to overcome certain assumptions in the proof
nonexistence of hidden variables, can be applied to red
the communication complexity of certain tasks, even if t
parties do not share any reference frame, and to distrib
secret keys among parties who do not share unspeak
information.
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