Minimum detection efficiency required for a loophole-free violation of the Braunstein-Caves chained Bell inequalities

Adán Cabello,1,* Jan-Åke Larsson,2 and David Rodríguez1

1Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
2Matematiska Institutionen, Linköpings Universitet, SE-58183 Linköping, Sweden

(Received 6 April 2009; published 22 June 2009)

The chained Bell inequalities of Braunstein and Caves involving \(N \) settings per observer have some interesting applications. Here we obtain the minimum detection efficiency required for a loophole-free violation of the Braunstein-Caves inequalities for any \(N \geq 2 \). We discuss both the case in which both particles are detected with the same efficiency and the case in which the particles are detected with different efficiencies.

DOI: 10.1103/PhysRevA.79.062109

PACS number(s): 03.65.Ud, 03.67.Mn, 42.50.Xa

I. INTRODUCTION

Soon after the Clauser-Horne-Shimony-Holt (CHSH) generalization [1] of the original Bell inequality [2], Wigner [3] and Pearle [4] realized that it is possible to make a local hidden variable (LHV) model which produces predictions in agreement with the predictions of quantum mechanics (QM) for a maximal violation of the CHSH Bell inequality, if each particle has not two, but three possible responses to the local measurements: being detected by the detector labeled \(-1\), being detected by the detector labeled \(+1\), or being undetected. “Then instead of four possible outcomes \((\ldots) \), there are nine possible outcomes. In one of these outcomes, neither particle is detected \((\ldots) \). In four of these outcomes one of the particles is not detected. If the experimenter rejects these data (in the belief that the apparatus is not functioning properly and that if it had been functioning properly, the data recorded would have been representative of the accepted data) \((\ldots) \), it is possible to produce a local hidden variable theory \(\left[\text{which gives} \right] \) predictions in agreement with the predictions of quantum theory” [4].

This is the origin of the so-called detection loophole of experimental tests of the violation of Bell inequalities. In most experimental “violations” of Bell inequalities, the overall detector efficiency (defined as the ratio of detected to produced particles) is below 0.2 (two remarkable exceptions are [5,6], where it is almost 1), and the experimenter rejects all the events where at least one of the particles is not detected, and assumes that the remaining data is representative of the data recorded had the efficiency of the detectors been perfect (this is the so-called fair-sampling assumption). This is an auxiliary assumption that restricts the studied class of LHV models considerably.

This paper focuses on the question of what minimum overall detection efficiency \(\eta_{\text{crit}} \) is required to escape from the detection loophole. In other words, how good our detectors need to be to give a conclusive experimental violation of a Bell inequality without the fair-sampling assumption. The bound \(\eta_{\text{crit}} \) is the value of the detected- to emitted-particle ratio such that, if \(\eta \leq \eta_{\text{crit}} \), there is an LHV model reproducing the predictions of QM, but no such LHV models exist if \(\eta > \eta_{\text{crit}} \).

For the CHSH Bell inequality, and assuming a perfect preparation, \(\eta_{\text{crit}} = 2(\sqrt{2} - 1) = 0.83 \) if all particles are detected with the same efficiency [7,8] and \(\eta_{\text{crit}} = \frac{1}{\sqrt{2}} = 0.71 \) if one of the particles is always detected [9,10].

Mermin proposed an \(n \)-party two-setting generalization of the (two-party two-setting) CHSH Bell inequality [11]. For the Mermin Bell inequalities, it has been recently proven that \(\eta_{\text{crit}}(n) = \frac{n}{(2N - 2)} \) [12]. The amount of violation \(D \) (defined, for Bell inequalities involving only averages of products of local operators, as the ratio between the quantum prediction and the bound of the Bell inequality) grows with the number of parties \(n \) as \(D(n) = 2^{(N-1)/2} \). Therefore, for the Mermin Bell inequalities, \(\eta_{\text{crit}} = [2 + (\log 2/\log D)]/4 \); it seems likely that there is a close relation between \(\eta_{\text{crit}} \) and \(D \) for other generalizations as well.

Braunstein and Caves (BC) proposed a two-party \(N \)-setting generalization of the CHSH Bell inequality [13,14], in which the first observer can choose one out of \(N \) alternative experiments \(A_1, A_2, \ldots, A_{2N-1} \), and the second observer one out of \(N \) alternative experiments \(B_1, B_2, \ldots, B_{2N} \), each of them having only outcomes \(+1 \) or \(-1 \). The BC chained Bell inequalities (in the case of ideal detectors) are

\[
|E(A_1 B_2) + E(A_3 B_3) + E(A_5 B_5) + E(A_7 B_7) + \cdots + E(A_{2N-1} B_{2N}) - E(A_2 B_{2N})| \leq 2N - 2. \tag{1}
\]

These inequalities are violated by correlations \((A_i B_j) \) obtained from QM. For instance [15], for the state

\[
|\psi^+\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle), \tag{2}
\]

choosing

\[
A_j = \cos(j \pi/2N) \sigma_x + \sin(j \pi/2N) \sigma_z, \tag{3a}
\]

\[
B_k = \cos(k \pi/2N) \sigma_x + \sin(k \pi/2N) \sigma_z, \tag{3b}
\]

we obtain

\[
\langle A_1 B_2 \rangle = \langle A_3 B_3 \rangle = \langle A_5 B_5 \rangle = \cdots = \langle A_{2N-1} B_{2N} \rangle = -\langle A_2 B_{2N} \rangle = \cos(\pi/2N). \tag{4}
\]

Therefore, the violation is

*adan@us.es

©2009 The American Physical Society
\[D(N) = \frac{2N \cos(\pi/2N)}{2N - 2}. \] (5)

That is, \[D(2) = \sqrt{2} \approx 1.414 \] (which is the maximum possible violation of the CHSH Bell inequality in QM [16]) and \[D(3) = 3\sqrt{3}/4 \approx 1.299. \] The violation decreases with \(n \). Indeed, Eq. (5) gives the maximum possible violation of the BC chained Bell inequalities (1) in QM [17].

Violations of the BC chained Bell inequalities have been observed (under the fair-sampling assumption) using pairs of photons entangled in polarization, with \(N = 3, 4 \) [18], and even \(N = 21 \) settings per observer [19].

The BC chained Bell inequalities have some interesting applications in situations where the CHSH Bell inequality is inadequate. For instance, the use of a BC inequality with \(N = 3 \) solves a problem in Franson’s CHSH Bell experiment [20], and reduces the number of trials needed to rule out local realism in experiments with perfect detection efficiency [21]. Moreover, the use of BC inequalities with higher values of \(N \) improves the security of quantum key distribution protocols [22], and has been also used to investigate nonlocal theories [23,24].

The aim of this paper is to calculate \(\eta_{\text{crit}}(N) \) for the maximum possible violation of the BC chained Bell inequalities (1) assuming a perfect preparation.

In Sec. II A we introduce some definitions. In Sec. II B we state the main result. The necessary condition is proven in Sec. II C. Both the case with equal (symmetric) and unequal (asymmetric) efficiencies for both particles are discussed. To prove the sufficient condition, explicit LHV models are built for both cases. The sufficient conditions for symmetric and asymmetric efficiencies are developed in Secs. II D and II E, respectively.

In Sec. III we present the conclusions and discuss the relation between the amount of violation \(D \) and \(\eta_{\text{crit}} \) for the BC inequalities and the effect of nonperfect visibilities in the state preparation.

II. DETECTION EFFICIENCY FOR THE BRAUNSTEIN-CAVES CHAINED BELL INEQUALITY

A. Basic definitions

In an LHV model, the result of a measurement of \(A_j \) on particle 1 and \(B_k \) on particle 2 is predetermined. This information can be summarized in the state of LHV of an individual pair of particles (hereafter simply called state), which is a list \(\{A_1, A_3, \ldots, A_{2N-1}; B_2, B_4, \ldots, B_{2N}\} \) of 2N instructions. For a given measurement \(A_j \) (or \(B_k \)), the possible instructions are: “give a detection in the detector \(-1\),” “give a detection in the detector \(+1\),” and “do not give a detection.” We will denote these instructions as \(-1, +1, 0\), respectively. Therefore, each state is represented by a list of 2N values in \([-1, +1, 0]\).

Because of the special status of the value 0 (“no detection”) it is not easy to estimate \(E(A_j B_k) \) from experiment. An estimate would need counting the number of “no detection” events that has occurred, and this is a nontrivial exercise. The usual approach is to delete (or rather, disregard) the “no detection” events and calculate the conditional correlation, given that a coincidence has occurred. We will use the notation \(\Lambda_{A_j B_k} \) for the ensemble of pairs that give rise to a coincidence, i.e., the ensemble where \(A_j \neq 0 \) and \(B_k \neq 0 \).

Using this notation, the averages easily obtainable from experiments are conditional averages on the form \(E(A_j | \Lambda_{A_j}) \), and similarly conditional correlations on the form \(E(A_j B_k | \Lambda_{A_j B_k}) \), both averages over obtained data. In general, given an ensemble \(\Lambda \) of pairs, \(E(A_j | \Lambda) \) will denote the average restricted to \(\Lambda \). If we divide the ensemble \(\Lambda \) into disjoint subensembles \(\Lambda_j \),

\[E(A_j B_k | \Lambda) = \sum_i E(A_i B_k | \Lambda_i) P(\Lambda_i | \Lambda). \] (6)

An LHV model for a given Bell experiment is an ensemble of pairs, each of them with its own state, which satisfies the predictions of QM for that experiment and reproduces the behavior of actual detectors. For example, in order to reproduce the predictions of QM for state (2) and local observables (3), the LHV model must satisfy

\[E(A_j | \Lambda_{A_j}) = 0, \quad \forall \quad j \in \{1, 3, \ldots, 2N - 1\}, \] (7a)

\[E(B_k | \Lambda_{B_k}) = 0, \quad \forall \quad k \in \{2, 4, \ldots, 2N\}, \] (7b)

and also must satisfy [from Eqs. (4)]

\[E(A_j B_k | \Lambda_{A_j B_k}) = E(A_j B_k | \Lambda_{A_j} \Lambda_{B_k}) \]
\[= E(A_j B_k | \Lambda_{A_j} \Lambda_{B_k}) \]
\[= \cdots = E(A_j B_k | \Lambda_{2N-1} \Lambda_{B_{2N}}) \]
\[= -E(A_j B_{2N} | \Lambda_{A_j} \Lambda_{B_{2N}}) \]
\[= \cos(\pi/2N). \] (8)

From our LHV model, we can now obtain probabilities like \(P(\Lambda_{A_j}) \), the probability that \(A_j \) is nonzero, \(P(\Lambda_{A_j} | \Lambda_{B_k}) \), the probability that both \(A_j \) and \(B_k \) are nonzero, and \(P(\Lambda_{A_j} | \Lambda_{B_k}) \), the conditional probability that \(A_j \neq 0 \) given that \(B_k \neq 0 \). Note that the last probability is simple to extract from an experiment while the former two are more difficult to get at. Also, \(P(\Lambda_{A_j} | \Lambda_{B_k}) = P(\Lambda_{A_j} | \Lambda_{B_k}) P(\Lambda_{B_k}) \). We will use the minimum conditional detection probability as an efficiency measure of our setups. In general, this means that the two detection sites can have individual efficiency measures,

\[\eta_{A_j} = \min_{j,k} P(\Lambda_{A_j} | \Lambda_{B_k}), \] (9a)

\[\eta_{B_k} = \min_{j,k} P(\Lambda_{B_k} | \Lambda_{A_j}). \] (9b)

The efficiency of the whole setup can be measured as

\[\eta = \min \eta_A, \eta_B. \] (10)

In order to reproduce the behavior of actual detectors, we will construct the LHV model to give nondetections at a constant probability (independent of measurement settings).
that are statistically independent between the two sites. This may seem like a severe restriction on the model, but as we will see, the model will be capable of reaching the bound η_{crit} even with this restriction. In the model, this corresponds to that the probabilities must satisfy

$$P(\Lambda_j) = \eta_A,$$
$$P(\Lambda_k) = \eta_B,$$
$$P(\Lambda_j | \Lambda_k) = \eta_A,$$
$$P(\Lambda_k | \Lambda_j) = \eta_B,$$

for the relevant combinations of $j \in \{1, 3, \ldots, 2N-1\}$ and $k \in \{2, 4, \ldots, 2N\}$.

For our purposes, it is also useful to realize that any LHV model can also be defined as a set of states and their probabilities of appearance. Clearly, the same applies to any of its subensembles (a specific value of the LHV is just a particular kind of ensemble), and, by definition, those probabilities will always be relative to the whole LHV model. This choice makes their interpretation as probabilities consistent on the probability space defined by the LHV model.

B. Main results

In what follows, we will prove the following theorem:

Theorem 1. The BC inequality (1) has a well-defined critical efficiency. That is, an efficiency below or equal to this critical value is necessary and sufficient for the existence of an LHV model giving the quantum violation of the inequality. Moreover, the value in the symmetric case ($\eta_A = \eta_B = \eta$) is

$$\eta_{\text{crit}}(N) = \frac{2}{N - 1 - \cos \left(\frac{\pi}{2N} \right) + 1},$$

and, when $\eta_A \neq \eta_B$, the relation between η_1 and η_{crit} is

$$\eta_{1\text{crit}}(N) = \frac{1}{N - 1 - \cos \left(\frac{\pi}{2N} \right) + 1 - \frac{1}{\eta_{\text{crit}}} \eta_{\text{crit}}(N)}.$$

C. Necessary condition

We now prove that the right-hand sides of Eqs. (12) and (13) are indeed upper bounds. The following proof does not need to assume independent errors [e.g., that $P(\Lambda_j | \Lambda_k) = P(\Lambda_j)$] or constant error rates [e.g., that $P(\Lambda_j) = P(\Lambda_k)$], hinted at above.

In the ideal case, the BC inequalities assert

$$|E(\Lambda_1 \Lambda_2) + E(\Lambda_1 \Lambda_3) + \cdots + E(\Lambda_{2N} \Lambda_{2N})| \leq 2N - 2.$$

This inequality applies on the ensemble on which all experimental setups would give results, i.e., $A_j B_k \neq 0, \forall j, k$. We would like an inequality that applies on correlations we can obtain from experiment, such as $E(A_j B_k | \Lambda_{\text{crit}})$. To do this, we note that the above inequality can be written

$$|E(A_j B_k | \Lambda_0) + E(A_j B_k | \Lambda_0)| + \cdots + |E(A_j B_k | \Lambda_0) + E(A_j B_k | \Lambda_0)|$$

where $\Lambda_0 = \Lambda_{A_n \Lambda_n} \Lambda_{B_n \Lambda_n}$ denotes the ensemble where all measurements give results. Since $E(A_j B_k | \Lambda_0)$ is not experimentally accessible, we need to relate the ensemble Λ_0 to the ensembles $\Lambda_{A_n \Lambda_n}$ and do that by formally defining

$$\delta_{2N} = \min \frac{P(\Lambda_0 | \Lambda_{A_n \Lambda_n})}{\text{settings}}.$$

We arrive at the following result:

Lemma 1. Relation (16) between the subensemble that obeys the BC inequality and the subensemble we see in experiment enables the inequality

$$|E(A_j B_k | \Lambda_0) + E(A_j B_k | \Lambda_0)| + \cdots + |E(A_j B_k | \Lambda_0) + E(A_j B_k | \Lambda_0)|$$

$$\leq 2N - 2.$$

Proof. Clearly, $\Lambda_0 \subset \Lambda_{A_n \Lambda_n}$, so we can split $\Lambda_{A_n \Lambda_n}$ into two subensembles Λ_0 (where all measurement settings give detections), and $\Lambda = \Lambda_{A_n \Lambda_n} \Lambda_0$ (where $A_n B_k$ give detections but one or more of the others do not). Note that $\Lambda_0 \cup \Lambda = \Lambda_{A_n \Lambda_n}$. We can write

$$|E(A_j B_k | \Lambda_0)| \leq |P(\Lambda_0 | \Lambda_{A_n \Lambda_n})| E(A_j B_k | \Lambda_0)$$

$$\leq |P(\Lambda_0 | \Lambda_{A_n \Lambda_n})| E(A_j B_k | \Lambda_0)$$

$$\leq |P(\Lambda_0 | \Lambda_{A_n \Lambda_n})| E(A_j B_k | \Lambda_0)$$

$$\leq 1 - \delta_{2N}.$$

Now,
\[|E(A,B_2|A_{A,B}) + E(A,B_4|A_{A,B})| \leq 2N - 1 - \frac{2N - 2}{\eta}. \]
(24)

Taking the minimum over the possible measurement settings immediately gives the lemma.

These two lemmas give the BC inequality for the symmetric case as

\[|E(A_1B_2|A_{A,B}) + E(A_1B_2|A_{A,B})| + |E(A_1B_2|A_{A,B})| + \cdots + |E(A_{2N-1}B_{2N}|A_{A_{2N-1},B_{2N}}) - E(A_{1}B_{2N}|A_{A_{1},B_{2N}})| \leq 2N - 2 \left(\frac{2N - 2}{\eta} \right) \]
(25)

For a generic value \(\beta \) on the left-hand side,

\[\beta \leq 2(N - 1) \left(\frac{2}{\eta} - 1 \right), \]
(26)

which leads to

\[\eta \geq \frac{2(N - 1)}{N - 1 + \frac{\beta}{2}}. \]
(27)

Inserting the value of \(\beta=2N \cos(\pi/2N) \) predicted by QM, we arrive at the right-hand side of Eq. (12).

The relation between the constant \(\delta_{2N,2} \) and the efficiency in the asymmetric case is as follows.

Lemma 3. In the asymmetric case,

\[\delta_{2N,2} \geq 2N - 1 - \frac{N - 1}{\eta_B} - \frac{N - 1}{\eta_A}. \]
(28)

Proof. The above approach gives

\[P(A_{A,B}|A_{A,B}) = P(A_{A_1}|A_{A,B}) + P(A_{B_2}|A_{A,B}) - P(A_{A_1} \cup A_{B_2}|A_{A,B}) \geq 2 \left(\frac{1}{\eta_A} - 1 \right) \]
(29)

which gives

\[P(A_{A_{2N-1},B_{2N}}|A_{A,B}) = P(A_{A_{2N-1}}|A_{A,B}) \cap A_{B_{2N}} \cap \cdots \cap A_{A_{2N-1},B_{2N}}|A_{A,B}) \geq 2 \left(\frac{1}{\eta_A} - 1 \right) \]
(30)

The proof proceeds as that of Lemma 2.

Lemma 1 and Lemma 3 give the BC inequality for the asymmetric case as

Now (Bonferroni),

\[P(A_0|A_{A,B}) = P(A_{A_1} \cap A_{B_2} \cap \cdots \cap A_{A_{2N-1},B_{2N}}|A_{A,B}) \geq P(A_{A_1}|A_{A,B}) + P(A_{B_2}|A_{A,B}) + \cdots + P(A_{A_{2N-1},B_{2N}}|A_{A,B}) - (N - 2) \]
(31)

and, as before, for a value \(\beta \) on the left-hand side
\[\beta \leq 2(N-1) \left(\frac{1}{\eta_A} + \frac{1}{\eta_B} - 1 \right), \]

or, equivalently,

\[\eta_A \leq \frac{1}{2(N-1)} \cdot \frac{1}{\beta} - 1, \]

Again, for the quantum prediction on \(\beta \) we obtain the right-hand side of Eq. (13).

A particularly interesting case is when \(\eta_B = 1 \). In terms of a generic \(\beta \) we have

\[\eta_A = \frac{2(N-1)}{\beta} \cdot \frac{1}{N \cos \left(\frac{\pi}{2N} \right)}. \]

D. Sufficient condition for symmetric efficiencies

To prove sufficiency of the established bounds, it is convenient to go back to our first approach to an LHV model, in terms of ensembles of pairs of particles, with pairs of specified values occurring at a given probability. We will simply build an LHV model with the desired \(\beta \) and \(\eta \).

We start by splitting the total ensemble into subensembles \(\Lambda_i \), that collect states that have exactly \(i \) nondetections (zero values) of the constituent \(\Lambda_i \)'s and \(B_i \)'s. We note that the \(\Lambda_0 \) so defined coincides with the \(\Lambda_0 \) defined at inequality (15), and therefore that the BC inequality holds for it. In fact, we have the following lemma:

Lemma 4. It is possible to construct a LHV model so that the results from the subensemble \(\Lambda_0 \) satisfy \(E(A_j \mid \Lambda_0) = E(B_j \mid \Lambda_0) = 0 \) and saturate the BC inequality.

Proof. Let \(\Lambda_0 \) consist of \(4N \) states \((n = 1, \ldots, 2N \) and \(m = \pm 1) \), all with equal probability, defined so that

\[A_j \text{ and } B_j = \begin{cases}
 m, & j < n \\
 -m, & j > n.
\end{cases} \]

It is immediately obvious that the individual results have equal probability, and it is simple to verify that

\[E(A_1 B_2 \mid \Lambda_0) = E(A_2 B_1 \mid \Lambda_0) = E(A_3 B_4 \mid \Lambda_0) = \cdots = E(A_{2N-1} B_{2N} \mid \Lambda_0) = -E(A_1 B_{2N} \mid \Lambda_0) = 1 - \frac{1}{N}. \]

Thus, the BC inequality is saturated by this model. \[\Box \]

The subensembles where one or more nondetections occur are not hindered by the BC inequality. Indeed, for those that give well-defined correlations we have the following result:

Lemma 5. It is possible to construct a LHV model so that the results from the subensembles \(\Lambda_i, 1 \leq i \leq 2N - 2 \), satisfy \(E(A_i \mid \Lambda_i) = E(B_i \mid \Lambda_i) = 0 \) and give all correlations the extreme value 1, and therefore maximally violate the BC inequality.

Proof. Let \(\Lambda_1 \) consist of 4\(N \) states \((n=1, \ldots, 2N \) and \(m = \pm 1) \), all with equal probability, defined so that

\[A_j \text{ and } B_j = \begin{cases}
 m, & j < n \\
 0, & j = n \\
 -m, & j > n.
\end{cases} \]

It is again immediately obvious that the individual results have equal probability, and this time it is also obvious that

\[E(A_1 B_2 \mid \Lambda_1) = E(A_2 B_1 \mid \Lambda_1) = \cdots = E(A_{2N-1} B_{2N} \mid \Lambda_1) = -E(A_1 B_{2N} \mid \Lambda_1) = 1. \]

Ensembles \(\Lambda_i \) with this property for \(i > 1 \) can trivially be constructed from \(\Lambda_1 \) by adding events with additional zeros and thus, the lemma holds for those as well. \[\Box \]

We are now in a suitable position to build an LHV model for the required values of \(\eta \) and \(\beta \). The existence is sufficiently important to give the result the status of a theorem.

Theorem 2. Sufficient condition for \(\eta_A = \eta_B = \eta \). When \(2N-2 \beta \leq 2N \) we can always build an LHV model with

\[\eta = \frac{2(N-1)}{N-1 + \frac{\beta}{2}}. \]

Proof. We use the above ensemble construction of \(\Lambda_0 \) and \(\Lambda_1 \), and also a subensemble with no detections \(\Lambda_{2N} \); we let the other subensembles have probability zero. In this model, under the assumption of independent errors, the probabilities of single detection and coincidence are

\[P(\Lambda_0) + \left(1 - \frac{1}{2N} \right) P(\Lambda_1) = \eta, \]

and

\[P(\Lambda_0) + \left(1 - \frac{1}{N} \right) P(\Lambda_1) = \eta^2. \]

Solving for the unknown probabilities, we obtain

\[P(\Lambda_0) = (2N-1) \eta^2 - (2N-2) \eta, \]

\[P(\Lambda_1) = 2N(\eta - \eta^2). \]

We also obtain
This makes the left-hand side of the BC inequality obey
\[
E(A_i B_2 | A_{i-1} B_2) = \cdots = E(A_{2N-1} B_{2N} | A_{2N-1} B_{2N})
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
\left(1 - \frac{1}{N} \right) P(A_i | L_o) + \left(1 - \frac{1}{N} \right) P(A_i | L_i)
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
\left(1 - \frac{1}{N} \right) \frac{2 \eta - \eta^2}{\eta^2}
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
\left(1 - \frac{1}{N} \right) \left(\frac{2}{\eta} - 1 \right).
\]
(42)

This makes the left-hand side of the BC inequality obey
\[
|E(A_i B_2 | A_{i-1} B_2) + E(A_i B_2 | A_{i-1} B_2) + \cdots + E(A_i B_2 | A_{i-1} B_2)|
\]
\[
= (2N-2) \left(\frac{2}{\eta} - 1 \right)
\]
\[
= \beta.
\]
(43)

Solving for \(\eta \), we arrive at Eq. (39).

\[\textbf{E. Sufficient condition for the asymmetric case}\]

To complete the sufficiency proof for \(\eta_a \neq \eta_b \), we first need to redefine our subensembles, to reflect the asymmetry of the two detectors. Here, we split the total ensemble into subensembles \(\Lambda_{i, l} \) that collect states that have exactly \(i \) nondetections (zero values) of the constituent \(A_S \) and exactly \(l \) nondetections of the constituent \(B_S \). We note that again the \(\Lambda_{0,0} \) so defined coincides with the \(\Lambda_0 \) defined at inequality (15), the BC inequality holds for it, and Lemma 4 gives a LHV model that saturates the BC inequality.

The subensembles where one or more nondetections occur are still not hindered by the BC inequality. Indeed, for those that give well-defined correlations we have the following result:

Lemma 6. It is possible to construct a LHV model so that the results from the subensembles \(\Lambda_{i, l} \), \(0 \leq i, l \leq N-1 \) and not both zero, satisfy \(E(A_i | \Lambda_{i, l}) = E(B_l | \Lambda_{i, l}) \) and give all correlations the extreme value 1, and therefore maximally violate the BC inequality.

Proof. In the case \(l=0 \), let \(\Lambda_{1,0} \) consist of \(2N \) states (\(n=1, \ldots, N \) and \(m=\pm 1 \)), all with equal probability, defined so that

\[
A_j = \begin{cases}
 m, & j < 2n - 1 \\
 0, & j = 2n - 1 \\
 -m, & j > 2n - 1
\end{cases}
\]

and

\[
B_j = \begin{cases}
 m, & j < 2n \\
 -m, & j = 2n \\
 -m, & j > 2n
\end{cases}
\]

(44)

Once more, it is immediately obvious that the individual results have equal probability; it is also obvious that

\[E(A_i B_2 | \Lambda_{1,0}) = \cdots = E(A_{2N-1} B_{2N} | \Lambda_{1,0})
\]
\[
= -E(A_i B_{2N} | \Lambda_{1,0})
\]
\[
= -E(A_i B_{2N} | \Lambda_{1,0})
\]
\[
= -E(A_i B_{2N} | \Lambda_{1,0})
\]
\[
\left(1 - \frac{1}{N} \right) P(L_0) + \left(1 - \frac{1}{N} \right) P(L_1)
\]
\[
= -E(A_i B_{2N} | \Lambda_{1,0})
\]
\[
\frac{2 \eta - \eta^2}{\eta^2}
\]
\[
= -E(A_i B_{2N} | \Lambda_{1,0})
\]
\[
\left(1 - \frac{1}{N} \right) \left(\frac{2}{\eta} - 1 \right).
\]

This makes the left-hand side of the BC inequality obey
\[
|E(A_i B_2 | A_{i-1} B_2) + E(A_i B_2 | A_{i-1} B_2) + \cdots + E(A_i B_2 | A_{i-1} B_2)|
\]
\[
= (2N-2) \left(\frac{2}{\eta} - 1 \right)
\]
\[
= \beta.
\]
(43)

Solving for \(\eta \), we arrive at Eq. (39).

Theorem 3. Sufficient condition for \(\eta_a \neq \eta_b \): When \(2N - 2 \leq \beta \leq 2N \) we can always build an LHV model with

\[
\eta_a = \frac{1}{\beta} \left(\frac{1}{N} + \frac{1}{\eta_b} \right).
\]
(46)

Proof. We use the above ensemble construction of \(\Lambda_{0,0}, \Lambda_{1,0}, \) and \(\Lambda_{0,1}, \) and also a subensemble with no detections \(\Lambda_{N,0} \); we let the other subensembles have probability zero. In this model, under the assumption of independent errors, the probabilities of single detection and coincidence are

\[
P(L_{0,0}) + P(L_{0,1}) + \left(1 - \frac{1}{N} \right) P(L_{1,0}) = \eta_a.
\]
(47a)

\[
P(L_{0,0}) + \left(1 - \frac{1}{N} \right) P(L_{0,1}) + P(L_{1,0}) = \eta_b.
\]
(47b)

\[
P(L_{0,0}) + \left(1 - \frac{1}{N} \right) P(L_{0,1}) + P(L_{1,0}) = \eta_a \eta_b.
\]
(47c)

Solving for the unknown probabilities, we obtain

\[
P(L_{0,0}) = (2N-1) \eta_a \eta_b - (N-1) \eta_a + \eta_b),
\]
(48a)

\[
P(L_{0,1}) = N(\eta_a - \eta_a \eta_b).
\]
(48b)

\[
P(L_{1,0}) = N\eta_b - \eta_a \eta_b.
\]
(48c)

We also obtain

\[
E(A_i B_2 | A_{i-1} B_2) = \cdots = E(A_{2N-1} B_{2N} | A_{2N-1} B_{2N})
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
= -E(A_i B_{2N} | A_{i-1} B_{2N})
\]
\[
\left(1 - \frac{1}{N} \right) \left[P(L_{0,0}) + P(L_{0,1}) + P(L_{1,0}) \right]
\]
\[
\left(1 - \frac{1}{N} \right) \left[P(L_{0,0}) + P(L_{0,1}) + P(L_{1,0}) \right]
\]
\[
\left(1 - \frac{1}{N} \right) \left(\frac{2 \eta - \eta^2}{\eta^2} \right)
\]
\[
\left(1 - \frac{1}{N} \right) \left(\frac{2}{\eta} - 1 \right).
\]

This makes the left-hand side of the BC inequality obey
\[
|E(A_i B_2 | A_{i-1} B_2) + E(A_i B_2 | A_{i-1} B_2) + \cdots + E(A_i B_2 | A_{i-1} B_2)|
\]
\[
= (2N-2) \left(\frac{2}{\eta} - 1 \right)
\]
\[
= \beta.
\]
(43)
MINIMUM DETECTION EFFICIENCY REQUIRED FOR A...