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Contextuality and nonlocality are two fundamental properties of nature. Hardy’s proof is considered the

simplest proof of nonlocality and can also be seen as a particular violation of the simplest Bell inequality.

A fundamental question is: Which is the simplest proof of contextuality? We show that there is a Hardy-

like proof of contextuality that can also be seen as a particular violation of the simplest noncontextuality

inequality. Interestingly, this new proof connects this inequality with the proof of the Kochen-Specker

theorem, providing the missing link between these two fundamental results, and can be extended to an

arbitrary odd number n of settings, an extension that can be seen as a particular violation of the n-cycle

inequality.
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Introduction.—Contextuality (i.e., the impossibility of
descriptions in terms of noncontextual hidden variables)
and nonlocality (i.e., the impossibility of descriptions in
terms of local hidden variables) are two fundamental prop-
erties of nature. Hardy’s proof of nonlocality [1,2] can be
presented in very simple ways [3–6]. Because of its
simplicity, it is considered ‘‘the best version of Bell’s
theorem’’ [5].

The argument can be formulated in terms of four boxes
which can be either empty or full. With Pð0; 1ji; jÞ denot-
ing the probability that box i is empty and box j is full (and
likewise for both boxes full and both empty), one can write
Hardy’s conditions as

Pð1; 1j1; 4Þ ¼ 0; (1a)

Pð1; 1j2; 3Þ ¼ 0; (1b)

Pð0; 0j2; 4Þ ¼ 0: (1c)

From these conditions, anyone who assumes that the result
of finding the boxes empty or full is predetermined and
independent of which other boxes are opened (i.e., non-
contextuality of results) would conclude thatPð1;1j1;3Þ¼0.
Nevertheless, in a physical experiment this implication can
be violated. For that, one needs to prepare a suitable two-
particle state and allow one observer to perform dicho-
tomic measurements 1 and 2 on one of the particles and
another observer to perform dichotomic measurements 3
and 4 on the other particle. With a suitable choice of
measurements one can satisfy conditions (1) but violate
the implication Pð1; 1j1; 3Þ ¼ 0. For details, see [1,2].

In quantum description, an experiment testing Hardy’s
argument has to probe a four-dimensional Hilbert space
and can be regarded [3] as an example for the violation of
the simplest Bell inequality, the Clauser-Horne-Shimony-
Holt inequality [7].

On the other hand, the simplest noncontextuality
inequality violated by nature is due to Klyachko, Can,
Binicioğlu, and Shumovsky (KCBS) [8] and is violated
already in three-dimensional quantum systems. A natural
question is whether there is a Hardy-like proof of contex-
tuality that may be seen as a violation of the KCBS
inequality.
Simple proof of quantum contextuality.—Consider a

physical system of five boxes, numbered from 1 to 5,
such that each of them can be either empty or full. Let’s
denote as Pð0; 1j2; 3Þ the joint probability of finding box 2
empty and box 3 full.
One can prepare this system in a state such that

Pð0; 1j1; 2Þ þ Pð0; 1j2; 3Þ ¼ 1; (2a)

Pð0; 1j3; 4Þ þ Pð0; 1j4; 5Þ ¼ 1: (2b)

Condition (2a) means that when box 2 is full then box 1 is
empty and when box 2 is empty then box 3 is full. The
condition can, thus, be reformulated as Pð1; 1j1; 2Þ ¼
Pð0; 0j2; 3Þ ¼ 0. Similarly, condition (2b) is equivalent to
Pð1; 1j3; 4Þ ¼ Pð0; 0j4; 5Þ ¼ 0.
From these conditions, anyone who assumes that the

result of finding the boxes empty or full is predetermined
and independent of which boxes are opened (i.e., non-
contextuality of results) would conclude that

Pð0; 1j5; 1Þ ¼ 0: (3)

However, one can prepare a quantum system such
that conditions (2) occur while (3) does not. For example,
one can prepare a three-level quantum system (a qutrit) in
the state

j�i ¼ 1ffiffiffi
3

p ð1; 1; 1ÞT; (4)
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where T means transposition and where opening box
i ¼ 1; . . . ; 5 is equivalent to measuring the projector on
the states jvii given by

jv1i ¼ 1ffiffiffi
3

p ð1;�1; 1ÞT; (5a)

jv2i ¼ 1ffiffiffi
2

p ð1; 1; 0ÞT; (5b)

jv3i ¼ ð0; 0; 1ÞT; (5c)

jv4i ¼ ð1; 0; 0ÞT; (5d)

jv5i ¼ 1ffiffiffi
2

p ð0; 1; 1ÞT; (5e)

and empty and full are equivalent to obtain result 0 and 1,
respectively.

Notice that the projectors onto jv1i and jv2i are compat-
ible since jv1i and jv2i are orthogonal. Therefore, the joint
probability of finding the result 0 for the projector onto jv1i
and the result 1 for the projector onto jv2i for the state j�i,
denoted as Pj�ið0; 1j1; 2Þ, is well defined, and the same

happens for the other four probabilities in (2) and (3).
Specifically,

Pj�ið0; 1j1; 2Þ þ Pj�ið0; 1j2; 3Þ ¼ 2

3
þ 1

3
; (6a)

Pj�ið0; 1j3; 4Þ þ Pj�ið0; 1j4; 5Þ ¼ 1

3
þ 2

3
: (6b)

However,

Pj�ið0; 1j5; 1Þ ¼ 1

9
; (7)

in contradiction to (3).
Moreover, it can be easily shown that 19 is the maximum

value allowed by quantum theory (QT) for any system
satisfying (2) [9].

Connection with the KCBS inequality.—The KCBS
inequality and its maximum quantum bound can be written
[10] as

X5

i¼1

Pð0; 1ji; iþ 1Þ �NCHV
2 �Q ffiffiffi

5
p

; (8)

where 5þ 1 ¼ 1, �NCHV
2 indicates that 2 is the maximum

value for noncontextual hidden variable (NCHV) theories,

and�Q ffiffiffi
5

p
indicates that

ffiffiffi
5

p � 2:236 is the maximum value
in QT.

Clearly, the left hand side of (8) is nothing but the sum of
the five probabilities in (2) and (3). For NCHV theories,
this sum is upper bounded by 2. However, in our example,
QT gives 2þ 1

9 . Therefore, the proof can be considered as

a particular violation of the KCBS inequality.
Connection with the Kochen-Specker theorem.—Kochen

and Specker were the first to prove the inconsistency
between QT and NCHV theories [11,12] and did it
using a construction involving 117 three-dimensional unit

vectors which is traditionally illustrated using a graph in
which vertices represent the vectors and adjacent vertices
represent orthogonal vectors [12]. This construction is
obtained by replicating 15 times a basic building block
which contains a set of eight vectors.
On the other hand, the exclusivity (orthogonality) rela-

tionships between the five events (vectors) in (8) are rep-
resented by a pentagon. For example, a choice of vectors
leading to the maximum quantum violation of the KCBS
inequality is represented in Fig. 1(a). Notice that the same
relationships occur for the Hardy-like proof of quantum
contextuality. Moreover, because of the additional require-
ment (2a), there must exist a vector jv6i that is orthonormal
to j�i, jv2i, and jv3i, and because of requirement (2b),
there must exist a vector jv7i that is orthonormal to j�i,
jv4i, and jv5i. If we represent the orthogonality relation-
ships of these eight vectors [see Fig. 1(b)], we end up with
exactly the basic eight-vector set of the Kochen and
Specker proof.
Generalization to an arbitrary number of settings and

connection with the odd cycle inequalities.—Hardy’s proof
can be extended to multiple settings [13–15] and the result-
ing proof is a particular violation of the chained Bell
inequalities [16–18], which have many fundamental appli-
cations [19–25]. A natural question is whether a similar
extension is possible for the contextuality proof.
Consider a physical system of an odd number n � 7 of

boxes, numbered from 1 to n, such that each of them can be
either empty or full. One can prepare this system in a state
such that

Pð0; 1j1; 2Þ þ Pð0; 1j2; 3Þ ¼ 1; (9a)

Pð0; 1j3; 4Þ þ Pð0; 1j4; 5Þ ¼ 1; . . . ; (9b)

Pð0; 1jn� 2; n� 1Þ þ Pð0; 1jn� 1; nÞ ¼ 1: (9c)

)b()a(
v1

v2v5

v3v4

v6v7

N r(1,0, )

( , , )( ,- , )

FIG. 1. (a) Graph of orthogonality between the vectors
leading to a maximum quantum violation of the KCBS inequal-

ity for the state jc i ¼ ð0; 0; 1ÞT . r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð�=5Þp

, c¼ cosð4�=5Þ,
s ¼ sinð4�=5Þ, C ¼ cosð2�=5Þ, S ¼ sinð2�=5Þ, and N ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
. (b) Graph of orthogonality between the vectors

in (4) and (5) in the Hardy-like proof of quantum contex-
tuality. The vectors that are not explicit in the Hardy-like
proof but are explicit in the Kochen-Specker proof are jv6i ¼
ð1= ffiffiffi

2
p Þð1;�1; 0ÞT and jv7i ¼ ð1= ffiffiffi

2
p Þð0; 1;�1ÞT .
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From these conditions, anyone assuming noncontextuality
of results would conclude that

Pð0; 1jn; 1Þ ¼ 0: (10)

However, for any odd n � 7, one can prepare a qutrit
such that conditions (9) occur while (10) does not.
Curiously, the orthogonality graph for the case n ¼ 7
shown in Fig. 2(a) was first studied in Ref. [26]. The
maximum quantum value for Pð0; 1j7; 1Þ is 1

5 [27].

The case n ¼ 9 shown in Fig. 2(b) was first studied in
Ref. [28] and the maximum quantum value for Pð0; 1j9; 1Þ
is ð1þ ½16=3 ffiffiffi

3
p �Þ�1 [28]. The maximum quantum value

for Pð0; 1jn; 1Þ tends to 1=2 when n tends to infinity (the
same value as in Hardy’s ‘‘ladder’’ proof [13–15]); see the
Appendix for a proof.

Interestingly, this extended contextuality proof is a
particular violation of a generalization of the KCBS
inequality to an odd number n � 7 of settings. These
generalized inequalities were introduced, independently,
in Refs. [29,30], and are called odd cycle inequalities.
For any n � 5 odd,

Xn

i¼1

Pð0; 1ji; iþ 1Þ �NCHV n� 1

2
�Q n cosð�nÞ

1þ cosð�nÞ
; (11)

where nþ 1 ¼ 1. The case n ¼ 5 corresponds to the
KCBS inequality (8). A number of arguments regarding
why these inequalities are fundamental tests of QT and the
experimental settings leading to the maximum quantum
violation of the inequalities can be found in Ref. [31]. The
noncontextuality polytopes associated with these inequal-
ities are fully characterized in Ref. [32].

Conclusion.—In this Letter, we generalize the reasoning
behind Hardy’s proof onto single systems realizable in a
three-dimensional Hilbert space. Our argument provides a
particularly simple realization of quantum contextuality
and links two fundamental results: the original (state-
independent and inequality-free) proof of impossibility of
NCHV theories in QT [12] and the simplest experimentally
testable noncontextuality inequality [8,33]. Moreover, the

proof can be extended to an arbitrary odd number n of
settings, and this extension provides a particular example
of the violation of the n-cycle inequalities for any odd n
and connects these recently discovered inequalities with
previous proofs of quantum contextuality.
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Appendix.—Equations (9) and (11) imply that

Pð0; 1jn; 1Þ � 1
2 . Here we show that limn!1Pð0; 1jn; 1Þ ¼

1
2 . For that, it is enough to give a state j�i and a set of

projectors such that limn!1Pj�ið0; 1jn; 1Þ ¼ 1
2 . For sim-

plicity, we restrict the discussion to the case n ¼ 4kþ 1.
Let measurement i be the projector on state jii and let

j1i; j2i; . . . ; j4ki; j4kþ 1i be given by

j1i / ð0; cos�1; sin�1 cos�1ÞT; (A1a)

j2ji ¼ ð� cos�j sin�j; cos�j cos�j; sin�jÞT;
(A1b)

j2jþ 1i ¼ ðsin�j sin�j;� sin�j cos�j; cos�jÞT;
(A1c)

j4k� 2jþ 2i ¼ ð� sin�j sin�j;� sin�j cos�j; cos�jÞT;
(A1d)

j4k� 2jþ 3i ¼ ðcos�j sin�j; cos�j cos�j; sin�jÞT;
(A1e)

for j ¼ 1; . . . ; k. The choice of these vectors is motivated
by the sharing of one common direction for all planes
generated by neighbor pairs. Explicitly, the state

j�i ¼ ð0; 0; 1ÞT (A2)

can be written as

j�i ¼ sin�jj2ji þ cos�jj2jþ 1i; (A3a)

and also as

j�i ¼ cos�jj4k� 2jþ 2i þ sin�jj4k� 2jþ 3i; (A3b)

implying Eq. (9).
The vectors in Eq. (A1) fulfill the orthogonality relations

h2lj2lþ 1i ¼ 0, for 1 � l � 2k. For the other compatibil-
ity conditions to be satisfied, we must also demand
that h2l� 1j2li ¼ 0, for 1 � l � 2k and h4kþ 1j1i ¼ 0
which, except by l ¼ 2ðkþ 1Þ, all give

tan�jþ1 cos�j ¼ tan�j; (A4a)

where �j ¼ �jþ1 ��j and 1 � j < k; the exceptional

case l ¼ 2ðkþ 1Þ gives
tan 2�k ¼ � cos2�k: (A4b)

(a)
v1

v2

v5

v3

v4

v8v10

v6

v7

(b) v1 v2

v5

v8

v4

v13

v6

v7

v9

v9

v3

v10

v12 v11

FIG. 2. (a) Graph of orthogonality between the vectors in the
Hardy-like proof of quantum contextuality with 7 settings.
(b) Idem with 9 settings.
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If one chooses �j¼j�=½2ðkþ1Þ�, all �j¼�=½2ðkþ1Þ�
and Eq. (A4) define all �j such that all the vectors are

distinct.
Under the above choices,

Pð0; 1jn; 1Þ ¼ sin2�1cos
2�1

cos2�1 þ sin2�1cos
2�1

; (A5)

and, as k ! 1, one has

Pð0; 1jn; 1Þ � sin2�1 ! 1

2
: (A6)
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