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1 The golden ratio in Hardy's proof of Bell's theorem

The following is my favorite of all the anecdotes involving Alberto Galindo | know. |
was preparing my Ph. D. in the Theoretical Physics Department of the Universidad
Complutense of Madrid. One day, my supervisor, Guillermo Garcia Alcaine, and
| went to Galindo's office and left one of our manuscripts for him to review.
Basically, the paper concerned the following problem: given two distant parties
sharing two qubits, A and B, prepared in an entangled state 7 such that

PyA =1,B=1)=P >0, (1)
Py(Ag=1,B,=1) =0, (2)
P,(A1 =1,By=1) =0, (3)
Py(Ap =~1,By = ~1) = (4)

where Ay and A; (By and B,) are two alternative dichotomic experiments (i.e.,
having only two possible outcomes, which we label £1) on qubit 4 (B), which is
the maximum possible value for P? We waited for some days and then went back
to Galindo's office and asked what he thought of it. “I haven't had time to read
it,” he said. We felt a bit disappointed, but after a few seconds of embarrassing
silence, Galindo added “However, your result is correct.” Guillermo and | looked
incredulously at each other. After a few more seconds, we gathered the courage to
ask him what were his reasons for thinking that. He just said “It's correct because
the final result is the fifth power of the inverse of the golden ratio, and such a
beautiful number cannot happen by chance.” Of course, he was right; our result

was ”
51
Prax = ( \/52 ) . (5)

Unfortunately, we later found out that such a beautiful result was previously
discovered by Lucien Hardy [1], as part of what, according to David Mermin, is
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“the best version of Bell's theorem” [2], which is based on equations (1), (2),(3)
and (4).

Bell's theorem [3] points out one of the main differences between classical
and quantum mechanics; it states that it is impossible to “complete” quantum
mechanics in such a way that local observables whose results can be predicted
with certainty from space-like separated measurements have predefined values “re-
vealed” by the experiments, as in classical mechanics. We will not review Hardy's
proof here; for details, see [1, 2]. However, in section 2 we shall present another
surprising example of how irrational numbers appear when we compare classi-
cal and quantum physics, and in section 3 we shall present another example of
“mathematical beauty”, namely, the simplest possible proof of another fundamen-
tal result, the Kochen-Specker theorem [4, 5, 6].

2 Pi in the sky! between classical and quantum worlds
2.1 Introduction

“Pour moi il n'y a pas de Dieu, il y a 7.

H. Cartier-Bresson [7].

“For me, God does not exist, it only exists 7, said Henri Cartier-Bresson, the
famous photographer, a year before his death. Through the years, | have learned
that irrational numbers appears in the most unexpected and diverse contexts.
Particularly, 7 appears in so many different situations that there are very thick
tomes devoted to this (for instance, see [8, 9]). Therefore, it would be dishonest
to show genuine surprise when finding 7 once again, even in the most unex-
pected circumstances. What is remarkable here, at least to me, is that, to my
knowledge, the following simple but somehow fundamental calculations cannot
be found elsewhere in the literature [10].

2.2 How larger quantum correlations are than classical ones?

Quantum information (that is, information carried by microscopic systems de-
scribed by quantum mechanics such as atoms or photons) can connect two space-
like separated observers by correlations that cannot be explained by classical com-
munication. This fact, revealed by Bell's inequalities and violations thereof [3, 11],
is behind common statements such as that quantum correlations are “stronger” or
“larger” than classical ones, or that quantum-mechanical systems may be “further
correlated” than those obeying classical physics (for instance, see [12]), and has

1P in the sky” sounds like “pie in the sky”, which is a common expression for saying
“castle in the air”; “Pi in the sky” is also the title of a short science-fiction story by
Fredric Brown by around 1945.
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been described as “the most profound discovery of science” [13]. Given its funda-
mental importance, it is surprising that the question of how “larger” than classical
correlations quantum correlations are has not, to my knowledge, a precise answer
beyond the fact that quantum mechanics violates Clauser-Horne-Shimony-Holt
(CHSH) inequalities [11] up to 2v/2 (Tsirelson's bound [14]), while the classi-
cal bound is just 2 [11]. To be more specific, if we denote by Q the set of all
correlation functions allowed by quantum mechanics in a given experimental sce-
nario, and by C the corresponding set of correlation functions allowed by a general
classical deterministic theory, a more precise measure of how larger quantum cor-
relations are compared to classical ones would be the ratio between the volumes
(i.e., hyper-volumes or contents) of both sets, Vo /Ve.

Another interesting problem is why quantum correlations cannot be even
“larger” than they are [15]. How much "larger” could, in principle, the set of corre-
lations be? A precise measurement of this would be the ratio between the volume
of quantum correlations and the volume of the set £ of all possible correlations
allowed by any general probabilistic local causal theory, Vo /V.

The EPR-Bell scenario [3, 11, 16, 17] is the simplest and most basic one where
the difference between classical and quantum correlations arises. It consists of
two alternative dichotomic experiments (i.e., having only two possible outcomes,
which we can label 1), Ay or Ay, on a subsystem A, and other two alternative
dichotomic experiments, B or By, on a distant subsystem B. Therefore, for the
EPR-Bell scenario the set of correlations (A;B;) is 4-dimensional. On the other
hand, this is the most basic scenario, since it is contained in any other experimental
scenario involving more subsystems, more experiments per subsystem, or more
outcomes (a discrete number of them) per experiment.

2.3 Correlations allowed by a classical deterministic theory

Froissart [18] and Fine [19, 20] (see also [21, 22]) proved that, for the EPR-Bell
scenario, the set of all joint probabilities attainable by a classical deterministic
local theory (i.e., a theory in which the local variables of a subsystem determine
the results of local experiments on this subsystem) is an 8-dimensional polytope
with 16 vertices and 24 faces. The set of correlations is a 4-dimensional projection
of the set of joint probabilities. The connection between both sets is given by

(AiBj) = Y abP(A; = ax, Bj = by). (6)
kJle{—1,1}

The 4-dimensional projection corresponding to the set C of all correlation functions
that can be attained by a classical deterministic local theory is defined by 8 CHSH
inequalities. To be precise, a set of 4 real numbers (A;B;) (i.j = 0,1) belongs
to C, i.e., represents a set of correlations attainable by a classical deterministic
local theory, if and only if

|(A0Bo) + (AoB1) + (A1 By) + (A1 By) — 2(A;B;)| < 2, (7)
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for all 4,5 = 0,1. The volume of this four-dimensional set C can be easily calcu-
lated,

Ve = (8)

w| v,

2.4 Correlations allowed by a general probabilistic local theory

Supposing we do not assume that the results of local experiments on the sub-
systems are determined, as in the previous case, but are probabilistic. The only
restriction now will be that signaling is forbidden (i.e., the two distant observers
cannot signal to one another via their choice of input). The no-signaling condi-
tion restricts the set of joint probabilities. The no-signaling condition imposes that
the marginal probabilities P(B; = b) [P(A; = a)] should be independent of the
choice of A; [B;], for all B; and b € {—1,1} [for all A; and a € {—1,1}]. This
implies 8 restrictions on the set of joint probabilities, so that the set of all possible
joint probabilities satisfying the no-signaling condition has dimension 8. This set
is a convex polytope with 24 vertices and 16 faces [23]. However, the restrictions
imposed on the set of joint probabilities by the no-signaling condition do not im-
ply new non-trivial restrictions on the set of correlations (A;B;). There are either
sets of joint probabilities violating no-signaling but satisfying inequalities (7) and
sets satisfying no-signaling but maximally violating (7) [15]. Therefore, the set £
of all correlation functions that can be attained by a probabilistic local theory is
simply defined by the 8 inequalities

[(AiB;)| <1, (9)
fori,j =0,1. L is a 4-dimensional cube (a tessaract). Its volume is
Ve =24 (10)

Comparing (8) and (10), it is easy to see that the volume of the set of correla-
tions attainable by classical deterministic theories is just 2/3 of that allowed by
probabilistic local theories.

2.5 Correlations allowed by quantum mechanics

Although rarely mentioned in the literature, to my knowledge, there are three
equivalent sets of necessary and sufficient conditions to define the set Q of corre-
lations attainable by quantum mechanics. The first was provided by Tsirelson [24].
According to Tsirelson, a set of 4 correlations (A;B;) (i,j = 0,1) is realizable
in quantum mechanics (i.e., belongs to Q) if at least one of the following two
inequalities holds:
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0 < ((AoB1)(A1By) — (AgBo)(A1By))
x ((AoBo)(AoB1) — (A1Bo)(A1By))
x ((AoBo)(A1Bo) — (Ao B1)(A1B1))
< ﬁ(izjmiBjV)? - %;miw -2[Jem) (1)
0< 211}?]!X<Ai13j>4 - (II}E}XML'BJ‘)Z)(Z(&BDZ)

+2 [ J(A:By)- (12)

The second characterization of Q is due to Landau [25]. According to him,
4 correlations belong to Q if and only if they satisfy the following inequalities:
[(AoBo)(AoB1) — (A1 Bo)(A1B1)| <
V1= (A0By)2\/1 - (AgBy)?
+v/1 = (A1 Bo)2\/1 — (A1 By)2. (13)
These inequalities (13) are equivalent to inequalities (11) and (12) [23].
The third equivalent definition of Q can be explicitly found for the first time in

[23] (although it can be easily derived from the results in [25]). According to this,
4 correlations belong to Q if and only if they satisfy the following 8 inequalities:

| arcsin (Ao By) + arcsin (AgBy) + arcsin (A; By)
+arcsin (A, By) — 2arcsin (A; B;)| < 7, (14)

for all i,j = 0,1. Using inequalities (14) to describe Q has the advantage of
being analogous to using inequalities (7) to describe C. These inequalities (14)
have been recently rediscovered by Masanes [26].
The simplest way to calculate the volume of Q, which is a 4-dimensional
convex set [23], is by using expression (13). Then, it can be seen that
Q-2
0= ‘% ~ 0.925 x 21 (15)

Therefore, the ratio between the volumes of the set of quantum correlations
and those allowed by classical deterministic theories, which is a good measure of
how larger than classical correlations quantum correlations are for the EPR-Bell

scenario, is .
Vo 3 :
= = — ] =~ 1.388. 1

Ve ( 8 ) (16)

Is not surprising to find 7 in the answer to the question of how larger than classical
correlations quantum correlations are?

On the other hand, the ratio between the volumes of the set of quantum
correlations and those allowed by general local theories theories is
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Vo  3n2
V; = 312 ~ 0.925. (17)

This result allows us to quantify how “larger” than the set of quantum correlations
the set of possible correlations could be: 7.5% of the, in principle, possible sets
of four correlations never occur in nature.

3 Quantum coffee, Wheeler and the simplest proof of the
Kochen-Specker theorem

3.1 Wheeler's “it from bit”

“Trying to wrap my brain around this idea of information theory as the
basis of existence, | came up with the phrase “it from bit." The universe
an all that it contains ("it") may arise from the myriad yes-no choices of
measurement (the “bits"). Niels Bohr wrestled for most of his life with
the question of how acts of measurement (or ‘registration”) may affect
reality. It is registration (...) that changes potentiality into actuality. |
build only a little on the structure of Bohr's thinking when | suggest
that we may never understand this strange thing, the quantum, until we
understand how information may underlie reality. Information may not be
Just what we learn about the world. It may be what makes the world. An
example of the idea of it from bit: When a photon is absorbed, and thereby
“‘measured"—until its absortion, it had no true reality—an unsplittable bit
of information is added to what we know about the world, and, at the
same time that bit of information determines the structure of one small
part of the world. It creates the reality of the time and place of that
photon's interaction.”

J. A. Wheeler [and K. W. Ford] [27], pp. 340-341.

The first time | heard about John Wheeler's way of understanding quantum
mechanics (see also [28, 29]) and thought, and | still do, that it should be the
“correct” point of view, was during an informal chat that Alberto Galindo shared
with us, his then students of fourth curse of the degree in Physics, over a cup of
coffee. The idea that the measuring process creates a “reality” that did not exist
objectively before the intervention since, as Asher Peres likes to say, “unperformed
experiments have no results” [30], is supported by the Kochen-Specker (KS) theo-
rem [4, 5, 6], one of the most fundamental results in quantum mechanics. Alberto
Galindo was also presiding the board of examiners of my Ph. D. thesis [31]. One
of the main results of that thesis was a proof [32, 33, 34], the simplest known at
the time, of the KS theorem. This proof, which leaded to many interesting new
results, is reviewed below. With the exception of the figure illustrating the proof,
there is nothing new in the subsections that follow. The pretext for presenting it
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again is not only because such a proof still is the simplest one known, but also
because, as has been recently proved [35, 36], it is the simplest possible proof of
the KS theorem, as conjectured by Peres [37].

3.2 The Kochen-Specker theorem

The KS theorem states that yes-no questions about an individual physical system
cannot be assigned a unique answer in such a way that the result of measuring
any mutually commuting subset of these yes-no questions can be interpreted
as revealing these preexisting answers. More precisely, the KS theorem asserts
that, in a Hilbert space H,; with a finite dimension, d > 3, it is possible to
construct a set of n projection operators, which represent yes-no questions about
an individual physical system, so that none of the 2" possible sets of "yes” or “no”
answers is compatible with the sum rule of quantum mechanics for orthogonal
resolutions of the identity (i.e., if the sum of a subset of mutually orthogonal
projection operators is the identity, one and only one of the corresponding answers
ought to be "yes"). This conclusion holds irrespective of the quantum state of
the system. Implicit in the KS theorem is the assumption of noncontextuality:
each yes-no question is assigned a single unique answer, independent of which
subset of mutually commuting projection operators one might consider it with.
Therefore, the KS theorem discards hidden-variable theories with this property,
known as noncontextual hidden-variable (NCHV) theories. Local hidden-variable
theories, such as those discarded by Bell's theorem, are a particular type of NCHV
theories, so in this sense, the KS theorem is more general than Bell's theorem.

3.3 The simplest proof of the KS theorem

The proof of the KS theorem with 18 projection operators in ‘H4 [32, 33, 34] is
given in table 1.

Table 1. The 18-vector roof of the KS theorem in H,.

1000 1111 1111 1000 1001 1001 1111 1111 1001
0100 1111 1111 0010 0100 1I11 1100 0101 0110
0011 1100 1010 0101 0010 1111 0011 1010 1111
0011 0011 0101 0101 1001 0110 1111 1111 1111

Table 1 contains 18 vectors combined in 9 columns. Each vector appears twice.
Each vector represents the projection operator onto the corresponding normalized
vector. For instance, 0011 represents the projector onto the vector 4(0,0,1,~1).
Each column contains 4 mutually orthogonal vectors, so that the éorresponding
projectors sum the identity in Hy. Therefore, in a NCHV theory, each column
must have assigned the answer "yes" to one and only one vector. But it is easily
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seen that such an assignment is impossible since each vector appears twice, so
that the total number of "yes” answers must be an even number.

If we view H, as a product of two tensor factors, Hy ® H.o, corresponding to
two qubits. Then, by realizing that the 18 vectors in table 1 are eigenvectors of
some products of the usual representation of the Pauli matrices o and o, for the
spin state of spin-1/2 particles, we can rewritten table 1 as table 2.

Table 2. The 18-vector proof of the KS theorem in Ha @ Ho.

]

2% XX XTT 22 | ZZXT  Z2LT  ZXTZ 2XTZ | 22TT
2Z Tx xT Zz F-¥3 T 2T Tz zZzax
Zr 2 Iz zz zz Tx zZx Tz 2TTZ
X ZT XZ TZ | 22TT ZFzaax zaxTE ZTaz | TTaz

The notation in table 2 is the following: zZ represents the yes-no question
“are the spin component of first particle positive in the z direction and the spin
component of second particle negative in the x direction?”, and ZZxz denotes
the yes-no question “are the products zz := 01. @ 09, and 2z = 01z & 09,
negative and positive respectively?’, etc. The first is an example of a factorizable
yes-no question, since it can be answered after separate tests on the first and
second particles. The latter is an example of an entangled yes-no question, since
it cannot be answered after separate tests on both particles. Therefore, in table 2
there are two types of yes-no questions and, consequently, three types of maximal
tests: those involving factorizable yes-no questions only, such as those in columns
1 to 4; those involving both factorizable and entangled yes-no questions, such as
those in columns 4 to 8; and those involving entangled yes-no questions only, such
as the one in the ninth column. Taking into account this hierarchy of experiments,
the relevant elements of the proof of the KS theorem in H,®H, can be illustrated
as in fig. 1.

Beyond its graphical beauty, the interest of fig. 1 arises from the fact that it en-
capsulates the hierarchy of tests that is behind a gedanken experiment which chal-
lenged the old idea that the KS theorem could not be tested in a laboratory [38].
Such a gedanken experiment was refined in [39] and finally performed [40]. The
connection between the 18-vector proof and the experiment proposed in [38] is
explained in [34].
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