Eficiencia crítica para las desigualdades encadenadas de Braunstein y Caves

Adán Cabello¹, Jan Ake Larsson² y David Rodríguez¹

¹ Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, España.
² Matematiska Institutionen, Linköpings Universitet, SE-58183 Linköping, Suecia.

Las desigualdades de Bell encadenadas de Braunstein y Caves (BC) [1] son una generalización de las desigualdades de Clauser-Horne-Shimony-Holt (CHSH) [2], en la que cada uno de los dos observadores puede elegir medir uno de N observables con resultados 1 ó -1. Si A₁, A₂,..., A₂N-1 son los observables del observador A, y B₁, B₂,..., B₂N los observables de B, la desigualdad de BC (para un N dado) es

\[|E(A_1 B_1) + E(A_2 B_1) + E(A_2 B_2) + ... + E(A_{2N-1} B_{2N}) - E(A_1 B_{2N})| \leq 2N-2. \] \hspace{1cm} (1)

Un experimento de imposibilidad del realismo local con detectores imperfectos basado en las desigualdades de BC está sujeto al llamado "loophole" de la eficiencia: para eficiencias de detección por debajo de un umbral crítico, existen modelos de variables ocultas locales compatibles con los resultados experimentales [6].

En esta comunicación presentamos la condición necesaria y suficiente para esta eficiencia crítica, tanto en el que caso en el que las eficiencias de detección sean iguales para ambas partículas (como sucede en los experimentos con pares de fotones), como en el caso en que cada partícula se detecta con una eficiencia distinta (como sucede en los experimentos con pares átomo-fotón). También presentamos un procedimiento explícito para construir modelos asociados a dichas eficiencias críticas.

En concreto, si llamamos ηₐ y η₆ a las eficiencias de detección para los observadores A y B, respectivamente, la eficiencia crítica para la desigualdad de BC en el caso ηₐ = η₆ es

\[\eta_{crit}(N) = 2\left(\frac{N}{N-1}\cos(2N\pi) + 1\right) \] \hspace{1cm} (2)

Si ηₐ ≠ η₆ entonces

\[\eta_{A,crit}(N) = 1\left(\frac{N}{N-1}\cos(2N\pi) + 1 - \frac{1}{\eta_{B,crit}}\right) \] \hspace{1cm} (3)

Los autores agradecen la ayuda del Ministerio de Ciencia en Innovación (FIS2008-05596) y de la Junta de Andalucía (P06-FQM-02243 y P07-FQM-03037).

Referencias