International Conference on
Quantum Information
and
Computation

Stockholm, 4-8 October, 2010

Book of Abstracts

Location:
Wenner-Gren Center, Stockholm, Sweden
Webpage:
http://agenda.albanova.se/conferenceDisplay.py?confId=1440
International Conference on
Quantum Information and Computation

Wenner-Gren Center, Stockholm, Sweden
October 4 - 8, 2010

Conference held in conjunction with the NORDITA Program on Quantum Information and in co-operation with the Institut Mittag-Leffler’s scientific program on Quantum Information Theory.

Organizers
Ingemar Bengtsson
Gunnar Björk
Mohamed Bourennane
Hoshang Heydari
Sébastien Sauge

Scientific Organizing Committee
Adán Cabello
Nobuyuki Imoto
Sergei K林
Andrei Klimov
Sergei Kulik
Jon Magne Leinaas
Klaus Mølmer
Harald Weinfurter
Göran Wendin
Andrew White
Carlos Saavedra
Barry Sanders
Alexander Sergienko
Kalle-Antti Suominen
Marek Žukowski

Co-organizers at
Institut Mittag Leffler
Alexander Holevo
Mary Beth Ruskai
Erling Störmer
Andreas Winter
Michael Wolf

Sponsors
NORDITA – Nordic Institute for Theoretical Physics
Vetenskapsrådet – Swedish Research Council
Royal Institute of Technology (KTH), Stockholm
Stockholms Universitet
The Linnaeus Center for Advanced Optics and Photonics (ADOPT)

© Kungliga Tekniska Högskolan, Stockholm, Sweden 2010
All-versus-nothing (AVN) proofs [1–6] show the conflict between Einstein, Podolsky, and Rosen’s (EPR) elements of reality [7] and the perfect correlations of some quantum states. The name of “all-versus-nothing” [8] reflects a particular feature of these proofs: If one considers a set of perfect correlations and assumes EPR elements of reality, then a subset of these correlations leads to a conclusion that is opposite of the one obtained from the complementary subset of correlations.

The perfect correlations among single qubit measurements required for AVN proofs are given by the 2^n stabilizer operators of an n-qubit graph state. The possibility of experimentally preparing new classes of graph states [9–11] naturally leads to the following problem: Does a distribution of an n-qubit graph state between m parties allow an AVN proof? This problem has been solved for $m = 2$ [12]. Here we describe a method to decide whether a given n-qubit m-particle graph state allows an m-partite AVN proof specific for this state (i.e., which cannot be obtained using a graph state with fewer qubits) [13]. This method requires that two observables of each qubit are EPR elements of reality. This forces a series of constraints that are only satisfied by a reduced group of the graph state’s stabilizer operators. We detail these requirements and apply them to decide whether some n-qubit m-particle graph states recently prepared in the laboratory [9–11] allow m-partite AVN proofs.

We also address the following problem: Given an n-qubit graph state, what is the minimum number m of parties that allows a specific m-partite AVN proof? The solution of this problem enables us to obtain all inequivalent distributions allowing AVN proofs with $n < 9$ qubits and an arbitrary number m of parties [13].

These results provide the tools to help experimentalists to design tests of new AVN proofs and new Bell inequalities based on these proofs [14].

We acknowledge support from the Spanish MCI Project FIS2008-05596, and the Junta de Andalucía Excellence Project P06-FQM-02243.