Hidden Variables Simulating Quantum Contextuality Increasingly Violate the Holevo Bound

Adán Cabello\(^1\) and Joost J. Joosten\(^2\)

\(^1\) Departamento de Física Aplicada II
Universidad de Sevilla, 41012 Sevilla, Spain
adan@us.es
www.adancabello.com

\(^2\) Dept. Lògica, Història i Filosofia de la Ciència
Universitat de Barcelona, Montalegre 6, 08001 Barcelona, Spain
jjoosten@ub.edu
www.phil.uu.nl/~jjoosten/

Abstract. In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language.

We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.

1 Introduction

In this paper we will focus on an experiment that is associated to the famous Peres-Mermin square \([8,9]\). The experiment consists of a sequence of measurements performed consecutively on a two-qubit system. All the measurements are randomly chosen from a subset of those represented by two-fold tensor products of the Pauli matrices \(X\), \(Y\) and \(Z\), and the identity \(I\). The set \(\mathcal{L}\) of all sequences of outcomes consistent with Quantum Mechanics is studied as a formal language.

In the theory of formal languages, the Chomsky hierarchy \([4,10]\) defines a classification of languages according to their level of complexity. In Section 2,
this language \mathcal{L} will be classified in the Chomsky hierarchy. It will be seen to live in the lower regions of the hierarchy. More concrete, it will be seen that the language is of Type 3, also called \textit{regular}.

In Section 3, the question is addressed how much memory is needed to simulate Quantum Mechanics in experiments with sequential measurements. The question naturally arises: \textit{how} are we allowed to simulate nature. We wish to refrain from technical implementation details of these simulations as much as possible. To this extent, we invoke the Church-Turing thesis that captures and mathematically defines the intuitive notion of what is computable at all by what mechanized and controlled means so-ever. This gives rise to our notion of MAGAs: Memory-factored Abstract Generating Automata. We prove a lower bound for the amount of memory needed for MAGAs that simulate extensions of the experiment associated to the Peres-Mermin square and shall see that this bound directly and increasingly so violates the Holevo bound.

2 Language Defined by the Experiment

In this paper we will denote the Peres-Mermin square by the following matrix

$$
\begin{pmatrix}
A & B & C \\
a & b & c \\
\alpha & \beta & \gamma
\end{pmatrix}
(\dagger),
$$

where these variables can get assigned values in $\{1, -1\}$. The corresponding – classically impossible to satisfy – restriction is that the product of any row or column should be 1 except for C, c, γ which should multiply to -1.

Basically, contextuality amounts to the phenomenon that the outcome of a measurement on a system relates to and depends on other (compatible) measurements performed on that system.

In the next Subsection 2.1, we will first formally describe the possible outcomes of the experiment that corresponds to the Peres-Mermin square. We will describe this in almost tedious detail as we later need to formalize the corresponding language.

2.1 The Experiment

We will collect the nine observables of our experiment into an alphabet Σ which we denote by

$$
\Sigma := \{A, B, C, a, b, c, \alpha, \beta, \gamma\}.
$$

The experiment consists of arbitrarily many discrete consecutive measurements of these nine observables which can take values in the two-element set $\{-1, 1\}$. For reference we reiterate that (\dagger) in this paper coincides with the well-studied Peres-Mermin square [8,9].
Definition 1 (Context; Compatible observables). The rows and columns of matrix (†) are called contexts. Two observables within the same context are called compatible and two observables that do not share a common context are called incompatible.

It is clear that each observable belongs to exactly two contexts. Likewise, each observable is compatible with 4 other observables and incompatible with 4 yet other observables. Now, let us define what it means for an observable to be determined.

Definition 2 (Determined observables; Value of a determined observable). An observable becomes (or stays) determined if:

(E1) Once we measure an observable, it becomes (or stays) determined and its value is the value that is measured, either 1 or −1. If the observable X that was measured was already determined, then the value of X that is measured anew must be the same as in the most recent measurement.

(E2) If two observables within one context are determined, and if the third observable in this context was not yet determined, this third value becomes determined too. Its corresponding value is such that the product of the three determined values in this context equals 1. The sole exception to this value assignment is the context \(\{A, B, C\} \) that should multiply to −1.

The notion of an observable being undetermined is defined by the following clause:

(D1) By default, an observable is undetermined and only becomes determined in virtue of (E1) or (E2). An observable X that is determined remains determined if and only if all successive measurements are in one of the two contexts of X that is, all successive measurements are compatible with X. As soon as, according to this criterion, an observable is no longer determined we say that it has become undetermined. Undetermined observables stay undetermined until they become determined. Undetermined observables have no value assigned. Sometimes we will say that the value of an undetermined observable is undefined.

A sequence of measurements is consistent with our experiment if its determined observables meet the restrictions above. In essence, part of our definition is of inductive nature. To see how this works, let us see this, by way of example, the sequence of measurements \([A = 1; B = 1; c = 1; \gamma = 1]\) is inconsistent with our experiment:
<table>
<thead>
<tr>
<th>Measured observable</th>
<th>Measured value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>The experiments start so by default, all observables were undetermined (D1). After the measurement, by (E1) the observable A is determined and assigned the value 1.</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>As B is a new measurement, the observable becomes determined (E1) with value 1. The observable A remains determined by (D1). Moreover, the observable C which is in the context ${A, B, C}$, now becomes determined in virtue of (E2) with value 1 too as the product $A \cdot B \cdot C$ should multiply to 1.</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>By (E1), c becomes determined with value 1 and the observables A and B become undetermined in virtue of (D1). The observable C remains determined by (D1) with value 1 as the new measurement of c is in the context ${C, c, \gamma}$. Thus, in virtue of (E2), the observable γ becomes determined too. Its value must be -1 as $C \cdot c \cdot \gamma$ should multiply to -1.</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>As we said before, in virtue of (E2) the value of γ should be -1. Thus this is inconsistent with the measurement of 1 for γ.</td>
</tr>
</tbody>
</table>

Note that only the last measurement was inconsistent with our experiment.

Remark 1. If we fill the square (\dagger) with any assignment of 1s and -1s, then the number of products of contexts that equal -1 will always be even.

Proof. By induction on the number of -1s. If all observables in (\dagger) are set to one, then all contexts multiply to one thus yielding zero $-$an even number$-$ of negative products. If we add one more -1 to (\dagger), this -1 will occur in exactly two contexts thereby flipping the sign of the respective products of these two contexts.

2.2 The Formal Language

In this subsection we shall specify a formal language comprising exactly the possible strings of measurements of our above specified experiment. We mention where the complexity of this language resides in the Chomsky hierarchy: the regular languages. Let us first briefly introduce some terms and definitions from the theory of formal languages.

We shall call a collection of symbols an *alphabet* and commonly denote this by Σ. A *string* or *word* over an alphabet is any finite sequence of elements of Σ in whatever order. We call the sequence of length zero the *empty string*, and will denote the empty string/word by λ. We will denote the set of all strings over
\(\Sigma \) by \(\Sigma^* \) using the so-called Kleene-star. Thus, formally and without recurring to the notion of sequence, we can define \(\Sigma^* \), the set of all finite strings over the alphabet \(\Sigma \) as follows.

\[
\lambda \in \Sigma^*; \\
\sigma \in \Sigma^* \& s \in \Sigma \Rightarrow \sigma s \in \Sigma^*.
\]

Instead of writing \(\lambda \sigma \), we shall just write \(\sigma \). It is clear that \(\Sigma^* \) is an inductive definition so that we also have an induction principle to prove or define properties over \(\Sigma^* \). For example, we can now formally define what it means to concatenate – stick the one after the other—two strings: We define \(\ast \) to be the binary operation on \(\Sigma^* \) by \(\sigma \ast \lambda = \sigma \) and \(\sigma \ast (\tau s) = (\sigma \ast \tau)s \). Any subset of \(\Sigma^* \) is called a language over \(\Sigma \).

The study of formal languages concerns, among others, which kind of grammars define which kind of languages, and by what kind of machines these languages are recognized. In the current paper we only need to provide a formal definition of so-called regular languages. We do this by employing regular grammars. Basically such a grammar is a set of rules that tells you how strings in the language can be generated.

Definition 3 (Regular Grammar). A regular grammar over an alphabet \(\Sigma \) consists of a set \(G \) of generating symbols together with a set of rules. In this paper we shall refer to generating symbols by using a line over the symbols. The generating symbols always contain the special start-symbol \(\overline{S} \). Rules are of the form

\[
\overline{X} \rightarrow \overline{\lambda} \quad \text{or} \\
\overline{X} \rightarrow s\overline{Y},
\]

where \(\overline{X}, \overline{Y} \in G \) and \(s \in \Sigma \). The only restriction on the rules is, that there must be at least one rule where the left-hand side is \(\overline{S} \).

Informally, we state that a derivation in a grammar is given by repeatedly applying possible rules starting with \(\overline{S} \), where the rules can be applied within a context. Thus, for example, when we apply the rule \(\overline{A} \rightarrow a\overline{B} \) in the context \(\sigma A \), we obtain \(\sigma a\overline{B} \). A more detailed example of a derivation is given immediately after Definition 4. We say that a string \(\sigma \) over \(\Sigma \) is derivable within a certain grammar if there is a derivation resulting in \(\sigma \). The language defined by a grammar is the set of derivable strings over \(\Sigma^* \). A language is called regular if it is definable by a regular grammar.

We are now ready to give a definition of a regular language that, as we shall see, exactly captures the outcomes of our experiment. To this end, we must resort to a richer language than just \(\Sigma \) as \(\Sigma \) only comprises the observables and says nothing over the outcomes. So, we shall consider a language where, for example, \(\hat{A} \) will stand for, “\(A \) was measured with value \(-1 \)”, and \(\hat{A} \) will stand for, “\(A \) was measured with value \(1 \)”. We will denote this alphabet by \(\hat{\Sigma} \). We will use the words compatible and incompatible in a similar fashion for \(\hat{\Sigma} \) as we did for our
observables in Σ. Thus, for example, we say that both B and \tilde{B} are compatible with C. The only difference will be that \tilde{A} is not compatible with A whereas A is.

Definition 4 (A grammar for \mathcal{L}). The language \mathcal{L} will be a language over the alphabet $\hat{\Sigma} := \{ A, \tilde{A}, B, \tilde{B}, \ldots, \beta, \tilde{\beta}, \gamma, \tilde{\gamma} \}$, where the intended reading of A will be that the observable A was measured to be 1, and \tilde{A} will stand for measuring -1, etc.

Before we specify the grammar that will generate \mathcal{L}, we first need some notational conventions. In the sequel, U, V, X, Y and Z will stand for possible elements of our alphabet. If X and Y are compatible symbols, we will denote by $Z(XY)$ the unique symbol that is determined in (E2) by X and Y. Thus, for example, $Z(AB) = \tilde{C}$ and $Z(C\gamma) = \tilde{c}$.

The generating symbols of the grammar will be denoted by a string with a line over it. Note that, for example, \overline{XY} is regarded as one single generating symbol. The intended reading of such a string is that the two symbols are different and compatible, the last symbol is the one that can be generated next, and the remainder of the string codifies the relevant history. As usual we will denote the initial generating symbol by \overline{S}. Let \mathcal{L} be the formal language generated by the following grammar:

\[
\begin{align*}
\overline{S} & \rightarrow \lambda & \text{for any symbol } X \in \Sigma \\
\overline{S} & \rightarrow \overline{X} \\
\overline{X} & \rightarrow X \\
\overline{X} & \rightarrow \overline{X} \overline{X} \\
\overline{X} & \rightarrow \overline{X} \overline{Z} & \text{for } Z \text{ incompatible with } X \\
\overline{X} & \rightarrow \overline{X} X \overline{Y} & \text{for } Y \text{ compatible with } X \text{ (but not equal)} \\
\overline{XY} & \rightarrow Y \\
\overline{XY} & \rightarrow \overline{Y} \overline{X} \\
\overline{XY} & \rightarrow \overline{Y} \overline{Z} \overline{X} \\
\overline{XY} & \rightarrow \overline{Y} \overline{Z} \overline{X} \overline{Y} & \text{for } Z \text{ compatible with } Y \text{ (not equal), but not with } X \\
\overline{XY} & \rightarrow \overline{Y} \overline{Z} \overline{X} \overline{Y} U & \text{for } U \text{ compatible with } Z(XY) \text{ (but not equal), but not compatible with } X \text{ or } Y
\end{align*}
\]

We emphasize that the conditions on the right are not part of the rules. Rather, they indicate how many rules of this type are included in the grammar. For example, $\overline{S} \rightarrow \overline{X}$ for any symbol $X \in \Sigma$ is our short-hand notation for nine rules of this kind.

Let us give an example of how this grammar works to the effect that $ABC\tilde{c}\gamma$ is in our language. Recall our reading convention that says that A stands for measuring $A = 1$, B for measuring $B = 1$, c for $c = 1$, and γ for measuring $\gamma = -1$. Here goes a derivation of the string $ABC\tilde{c}\gamma$:

<table>
<thead>
<tr>
<th>String derived</th>
<th>Instantiation of rule</th>
<th>General rule applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{A}</td>
<td>$\overline{S} \rightarrow \overline{A}$</td>
<td>By the rule $\overline{S} \rightarrow \overline{X}$ with $X = A$</td>
</tr>
<tr>
<td>AAB</td>
<td>$A \rightarrow AAB$</td>
<td>By the rule $\overline{X} \rightarrow \overline{XXY}$ (X and Y compatible) with $X = A$, $Y = B$. Note that A and B are indeed compatible.</td>
</tr>
<tr>
<td>$ABCc$</td>
<td>$AB \rightarrow BCc$</td>
<td>By the rule $\overline{XY} \rightarrow \overline{YZ(XY)U}$ for U compatible with $Z(XY)$ (but not equal), but not compatible with X or Y, where $X = A$, $Y = B$, $Z(XY) = C$ and $U = c$.</td>
</tr>
<tr>
<td>$ABc\overline{c}\overline{\gamma}$</td>
<td>$Cc \rightarrow c\overline{c}\overline{\gamma}$</td>
<td>By the rule $\overline{XY} \rightarrow \overline{YYZ(XY)}$ with $X = C$, $Y = c$ and $Z = \overline{\gamma}$.</td>
</tr>
<tr>
<td>$ABc\overline{\gamma}$</td>
<td>$c\overline{c} \rightarrow \overline{\gamma}$</td>
<td>By the rule $\overline{XY} \rightarrow Y$ with $X = c$ and $Y = \overline{\gamma}$.</td>
</tr>
</tbody>
</table>

In a previous example in Subsection 2.1, we showed that the string $ABC\gamma \in \overline{\Sigma}$ is not consistent with the experiment. It is not hard to prove that in our grammar there is no derivation of this string either.

We note and observe that the grammar has various desirable properties. As such, the grammar is monotone\(^1\), where each generated string contains at most one generating symbol. Moreover, it is easily seen that once a string generated by the grammar contains a composite generating symbol (like \overline{XY}), each subsequently generated string will also contain a composite generating symbol if it contains any generating symbols at all. Indeed, the grammar is very simple.

Theorem 1. The language \mathcal{L} as defined in Definition 4 coincides with the set of consistent measurements as defined in Definition 2.

Proof. We must show that, on the one hand any string in \mathcal{L} is consistent with the experiment, and on the other hand, any sequence of measurements consistent with the experiment is derivable in \mathcal{L}.

The first implication is proven by an induction on the length of the sequence of measurements. It is easy to see that any possible extension of a sequence of measurements by a new measurement is covered by one of the rules in the grammar.

A proof of the second implication proceeds by a simple induction on the length of a derivation in the grammar.

Note that by the mere syntactic properties of the definition of \mathcal{L} we see that \mathcal{L} is indeed a regular language.

Corollary 1. The set of consistent sequences of measurements of the Peres-Mermin experiment is a regular language.

\(^1\) That is, the length of each subsequent string in a derivation is at least as long as the length of the previous one.
Regular languages are of Type 3 in the Chomsky hierarchy. As such we have access to a corpus of existing theory. In particular, there exists a method to determine the minimal amount of states in a Deterministic Finite State Automata that will accept \(\mathcal{L} \). Moreover, we also have access to the following proposition [5].

Proposition 1. Let \(\mathcal{L} \) be a regular language. Then, there exist polynomials \(p_1, \ldots, p_k \) and constants \(\lambda_1, \ldots, \lambda_k \) such that the number of strings of length \(n \) in \(\mathcal{L} \) is given by

\[
p_1(n)\lambda_1^n + \ldots + p_k(n)\lambda_k^n.
\]

As we have seen already, now that we have access to a smooth inductive definition of \(\mathcal{L} \) and thus of the set of possible measurements according to the experiment described in Definition 2, various properties are readily proved using induction on the length of a derivation in \(\mathcal{L} \).

Definition 5. We say that a string \(\sigma \in \Sigma^* \) determines some observable \(s \in \Sigma \) with value \(v \), whenever the sequence of measurements corresponding to \(\sigma \) determines \(s \) as defined in Definition 2 with value \(v \). We say that a string \(\sigma \in \Sigma^* \) determines some context \(c \), if \(\sigma \) determines each observable in \(c \). We say that two strings \(\sigma, \sigma' \in \Sigma^* \) agree on \(s \in \Sigma \), whenever either both do not determine \(s \) or both determine \(s \) with the same value.

With this definition at hand, we explicitly re-state some observations that were already used in the proof of Theorem 1.

Lemma 1. If some \(\sigma \in \Sigma^* \) determines a context, then any extension/continuation \(\sigma \ast \tau \) of \(\sigma \) also defines a context.

This lemma does not scale to systems of more qubits. The following lemma does.

Lemma 2. Each \(\sigma \in \Sigma^* \) determines at most one context.

3 Hidden Variables and the Holevo Bound

Holevo [6] showed that the maximum information carrying capacity of a qubit is one bit. Therefore, a machine which simulates qubits but has a density of memory (in bits per qubit) larger than one violates the Holevo bound. In this section we show that a very broad class of machines that simulate the Peres-Mermin square violate the Holevo bound.

In [7] deterministic automata are presented that generate a subsets of \(\mathcal{L} \). In that paper lower bounds on the amount of states of these automata are presented. Of course, as \(\mathcal{L} \) inhibits a genuine amount of non-determinism any deterministic automata will generate only a proper subset of \(\mathcal{L} \) but never the whole set \(\mathcal{L} \) itself.

In the next subsection we shall introduce the notion of an Memory-factoring Abstract Generating Automata (MAGA) for \(\mathcal{L} \) and prove a lower bound on the number of states any MAGA should have if it were to generate \(\mathcal{L} \). In a sense, a MAGA for \(\mathcal{L} \) will generate all of \(\mathcal{L} \).
3.1 Memory-Factoring Abstract Generating Automata

In this project we are not interested in the details of (abstract) machine ‘hardware’. Thus, in our definition of a MAGA we will try to abstract away from the implementation details of language generating automata. We will do this by invoking the notion of *computability*. By the Church-Turing thesis (see, a.o. [10]) any sufficiently strong and mechanizable model of computation can generate the same set of languages, or equivalently, solve the same same set of problems. Thus, instead of fixing one particular model of computation and speak of computability therein, we may just as well directly speak of computable outright leaving the exact details of the model unspecified.

Basically, a MAGA \(\mathcal{M} \) for \(\mathcal{L} \) is an abstract machine that will predict the outcome of a measurement of some observable \(s \in \Sigma \) in the experiment as described in Definition 2 given that a sequence of measurements \(\sigma \in \hat{\Sigma}^* \) has already been done. If according to the experiment \(s \) is determined by \(\sigma \) with value \(v \in \{1, -1\} \), then \(\mathcal{M} \) should output \(v \). If the observable \(s \) is not determined by \(\sigma \) then \(\mathcal{M} \) should output \(r \) indicating that the experiment can randomly output a \(-1\) or a \(1\).

The only requirement that we impose on a MAGA is that its calculation in a sense *factors through* a set of memory states\(^2\) in the sense that before outputting the final value, the outcome of the calculation is in whatever way reflected in the internal memory of the machine. Let us now formulate the formal definition of a MAGA for \(\mathcal{L} \).

Definition 6 (MAGA). A Memory-factoring Abstract Generating Automata (MAGA) for \(\mathcal{L} \) is a quadruple \((M, M_0, M_1, S) \) with

1. \(S \) is (finitely or infinitely) countable set of memory states;
2. all of \(M, M_0 \) and \(M_1 \) are computable functions such that
 \(a) \ M = M_1 \circ M_0; \)
 \(b) \ M_0 : \mathcal{L} \times \Sigma \to S \times \Sigma, \)
 where\(^3\) \(\Pi_2 \circ M_0 = \mathbb{I}; \)
 \(c) \ and \ M_1 : S \times \Sigma \to \{1, -1, r\}, \)

such that

\[
M(\sigma, s) = \begin{cases}
1 & \text{if } \sigma \text{ determines } s \text{ with value } 1; \\
-1 & \text{"} \\
r & \text{if } \sigma \text{ does not determine } s.
\end{cases}
\]

In our definition, we have that \(M_0 : \hat{\Sigma}^* \times \Sigma \to S \times \Sigma \), where \(M_0 \) does nothing at all on the second coordinate, that is, on the \(\Sigma \) part. We have decided

\(^2\) A memory state is something entirely different from, and hence is not to be confused with, a quantum state.

\(^3\) Here \(\Pi_2 \) is the so-called projection function that projects on the second coordinate: \(\Pi_2(\langle x, y \rangle) = y \).Basically, \(\Pi_2 \circ M_0 = \mathbb{I} \) just says that \(M_0 \) only tells us which state is defined by a sequence \(\sigma \in \hat{\Sigma}^* \).
to nevertheless take the second coordinate along so that we can easily compose M_0 and M_1 to obtain M. This is just a technical detail. The important issue is that the computation factors through the memory. That is, essentially we have that $M : \mathcal{L} \times \Sigma \xrightarrow{M_0} S \xrightarrow{M_1} \{1, -1, r\}$ where M_1 borrows some extra information on the Σ-part of the original input.

Theorem 2. The class of MAGA-computable functions is the full class of computable functions.

Proof. It is easy to see that if we have infinite memory, we can conceive any Turing Machine μ with the required input-output specifications as a MAGA where M_0 is just the identity, S is coded by the tape input, and M_1 is the function computed by μ. Thus, the class of MAGA-computable functions is indeed the full class of computable functions.

3.2 A Lower Bound for the Peres-Mermin Square

With the formal definition at hand we can now state and prove the main theorem for the Peres-Mermin square. In the proof we will use the so-called Pigeon Hole Principle (PHP). The PHP basically says that there is no injection of a finite set into a proper subset of that set. Actually we will only use a specific case of that which can be rephrased as, if we stuck $n+1$ many pigeons in n many holes, then there will be at least one hole that contains at least two pigeons.

Theorem 3. Any MAGA for \mathcal{L} contains at least 24 states. That is, if $\langle M, M_0, M_1, S \rangle$ is such a MAGA, then $|S| \geq 24$.

Proof. We shall actually use a slightly modified version of a MAGA to prove our theorem. In the unmodified MAGA, the function M_0 tells us what state is attained on what sequence of measurements $\sigma \in \hat{\Sigma}^*$. In the modified MAGA we will only require that M_0 will tell us in what state the machine is whenever σ determines a full context.

To express this formally we define

$$\hat{\Sigma}^+ := \{\sigma \in \hat{\Sigma}^* \mid \sigma \text{ determines a full context of observables}\}.$$

Thus, instead of requiring that M_0 maps from $\hat{\Sigma}^* \times \Sigma$ to $S \times \Sigma$, we will require that M_0 maps from $\hat{\Sigma}^+ \times \Sigma$ to $S \times \Sigma$. Clearly, if we have a lower bound for any MAGA \mathcal{M} with this restriction on M_0, we automatically have the same lower bound for any MAGA \mathcal{M}' outright. This is so as any MAGA \mathcal{M}' trivially defines a restricted MAGA \mathcal{M} by just restricting the domain of M_0 to $\hat{\Sigma}^+ \times \Sigma$.

To continue our proof, let s_1, \ldots, s_{24} enumerate all possible combinations $\langle c, v_1, v_2 \rangle$ of contexts and the first two\footnote{For horizontal contexts we will enumerate from left to right and for vertical contexts we will enumerate from top to bottom. Thus, for example, the first two observables of the context $\langle C, c, \gamma \rangle$ are C and c.} values of the first two observables of that
context \(c\). Note that there are indeed \(6 \times 2 \times 2 = 24\) many such combinations. We define a map
\[
C : \tilde{\Sigma}^+ \rightarrow \{s_1, \ldots, s_{24}\}
\]
in the canonical way, mapping an element \(\sigma \in \tilde{\Sigma}^+\) to that \(s_i\) that corresponds to the triple consisting of the context that is determined by \(\sigma\) followed by the first two values of the the first two observables of that context. By Lemmas 1 and 2 the function \(C\) is well-defined.

Now, let \(\sigma_1, \ldots, \sigma_{24}\) be representatives in \(\tilde{\Sigma}^+\) of \(s_1, \ldots, s_{24}\) such that \(C(\sigma_i) = s_i\). For a contradiction, let us assume that there exists some restricted MAGA \(\langle M, M_0, M_1, S \rangle\) for \(\mathcal{L}\) with \(|S| \leq 23\). By the Pigeon Hole Principle, we can choose for this MAGA some \(\sigma_i\) and some different \(\sigma_j\) such that
\[
M_0(\sigma_i) = M_0(\sigma_j).
\]

We now use the following claim that shall be proved below. Recall from Definition 5 what it means for two sequences to agree on some variable.

Claim. If \(\sigma_k \neq \sigma_l\) then there is some \(s \in \Sigma\) such that \(\sigma_k\) and \(\sigma_l\) disagree on \(s\).

Once we know this claim to hold it is easy to conclude the proof. Consider any \(s \in \Sigma\) on which \(\sigma_i\) and \(\sigma_j\) disagree. By the definition of \(M\) we should have that \(M(\sigma_i, s) \neq M(\sigma_j, s)\). However as \(M_0(\sigma_i, s) = M_0(\sigma_j, s)\) we see that \(M_1 \circ M_0(\sigma_i, s) = M_1 \circ M_0(\sigma_j, s)\). But \(M_1 \circ M_0 = M\), which contradicts \(M(\sigma_i, s) \neq M(\sigma_j, s)\). We conclude that \(M\) can not have 23 or less states.

Thus to finalize our proof we prove the claim. Let \(C(\sigma_k) = \langle c^k, v^k_0, v^k_1 \rangle \neq \langle c^l, v^l_0, v^l_1 \rangle = C(\sigma_l)\). If \(c^k \neq c^l\) then \(c^k\) contains at least two observables on which \(\sigma_k\) and \(\sigma_l\) agree as each of these \(\sigma^\prime\)'s only determine observables in their respective contexts.

In case \(c^k = c^l\), then one of \(v^k_0, v^k_1\) differs from the corresponding one in \(v^l_0, v^l_1\) giving rise to a disagreement between \(\sigma_k\) and \(\sigma_l\).

This concludes the proof of the claim and thereby of Theorem 3.

Remark 2. Note that the proof of Theorem 3 nowhere invokes the notion of computability therefore proving actually something stronger.

One can easily see that for \(\mathcal{L}^+\) the obtained lower bound is actually sharp in the sense that there is a MAGA with 24 memory states for \(\mathcal{L}^+\). However, it seems that for \(\mathcal{L}\) this is not the case.

3.3 Scaling

We first note that the proof of Theorem 3 is very amenable to generalizations:

Remark 3. The proof of Theorem 3 easily generalizes under some rather weak conditions giving rise to lower bounds of \#contexts \(\times 2^\#degrees\) of freedom in one context).

\(^5\) Par abus de langage we will write \(M_0(\sigma_i)\) as short for \(\Pi_2(M_0(\sigma_i, s))\).
The Peres-Mermin square (⊗) that corresponds to the two-qubit system can be
generalized in various ways [1,2]. One particular generalization for \(n \) qubits gives
rise to a system where each context consists of exactly \(d \) elements with \(d = 2^n \)[2]. Moreover, there are \(c := \prod_{k=1}^{m} (2^k + 1) \) different many such contexts. Each
context is now determined by a particular selection of \(n \) of its elements. We shall
denote the corresponding languages by \(\mathcal{L}_n \). Thus, what we have called \(\mathcal{L} \) so far
in this paper, would correspond to \(\mathcal{L}_2 \).

Theorem 4. Any MAGA for \(\mathcal{L}_n \) contains at least \(2^n \cdot \prod_{k=1}^{n} (2^k + 1) \) many dif-
ferent memory states.

Proof. Basically this is just by plugging in the details of the languages \(\mathcal{L}_n \) into
remark 3. Let us very briefly note some differences with the proof of Theorem 3.
The main difference is that the set \(\mathcal{L}_n^+ \) is nice: once a string is in there, any
extension is as well. However, this does not impose us to, again define a re-
stricted MAGA by restricting the domain of \(M_0 \) to \(\mathcal{L}_n^+ \). Again, we consider the
\(n + 1 \)-tuples consisting of a context with some values for the\(^6\) \(n \) observables that
determine this context and choose some correspondence between these tuples
and some representing sequences \(\sigma_i \in \delta_n^* \). Clearly, these \(\sigma_i \in \mathcal{L}_n^+ \). As the claim
obviously holds also in the general setting, the assumption that the memory
states \(s_1, \ldots, s_{2^n} \cdot \prod_{k=1}^{n} (2^k + 1) \) suffice yields together with the PHP to a con-
tradiction as before.

As was done in [3] and in [7], we can consider the information density \(d_n \) for
the corresponding languages defined as the number of classical bits of memory
needed to simulate a qubit:

\[
d_n := \frac{\log_2(|S_n|)}{n}.
\]

If we apply the lower bound for \(S_n \) –the number of memory states for a MAGA
for \(\mathcal{L}_n \)– from Theorem 4 to \((+)\) we obtain

\[
S_n \geq 2^n \cdot \prod_{k=1}^{n} (2^k + 1) \\
\geq 2^n \cdot \prod_{k=1}^{n} (2^k) \\
\geq 2^n \cdot \left(2 \sum_{k=1}^{n} k \right) \\
\geq 2^n \cdot \left(2 \frac{n(n+1)}{2} \right)
\]

whence \(d_n \) is approximated (from below) in the limit by \(\frac{\log_2(2^n \cdot (2 \frac{n(n+1)}{2}))}{n} = \frac{n+3}{2} \sim \frac{n}{2} \). Thus, the information density in this generalization of the Peres-
Mermin square grows linear in the number of qubits. However, as observed be-
fore, any density more than 1 implies a violation of the Holevo bound.

\(^6\) For each context, we fix some \(n \) observables that determine that context as these
are not uniquely defined.
References