The universe can be divided into subsystems that interact with one another. Nevertheless, to predict the future state of a subsystem A, it is not necessary to specify the past state of the whole universe. This is what is meant by locality of the dynamical evolution of A within the global system. This paper deals with the dynamical notion of locality in quantum mechanics and its relation to information transfer in a universe divided into three subsystems, A, B and C, where the initial state of B does not affect the final state of A (i.e., no information transfer is possible from B to A under the dynamical evolution), even though both interact with C. Specifically, the authors explore what sort of local dynamics is possible if the global quantum evolution is unitary.

Reviewed by Adán Cabello