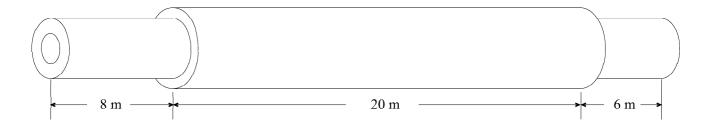


DEPARTAMENTO DE FISICA APLICADA II UNIVERSIDAD DE SEVILLA

ESCUELA UNIVERSITARIA DE ARQUITECTURA TECNICA Avd. Reina Mercedes, s/n 41012 - SEVILLA


Segundo Parcial. Curso 2005/2006. 27 de mayo de 2006.

Apellidos	
Nombre:	 Grupo oficial:

Problema 2°: (2,25 puntos)

La tubería cilíndrica de sección constante de la figura está revestida exterior y parcialmente por un material más aislante. La longitud del revestimiento es de 20 m, dejando sin recubrir a su izquierda 8 m de tubería y 6 m a su derecha. Los radios interior y exterior de la tubería son 2,3 cm y 2,7 cm respectivamente y el espesor del revestimiento es 3 mm. La temperatura de la pared interior de la tubería es 25 °C y la de las paredes exteriores 15 °C. Si la conductividad térmica del material de revestimiento es $k_{\rm rev} = 0.8 \, {\rm W/mK}$ y la del material de la tubería es $k_{\rm tub} = 8 \, {\rm W/mK}$, calcula:

- (a) La resistencia térmica equivalente del conjunto tubería y revestimiento.
- (b) La potencia calorífica transmitida por conducción a través del conjunto.

DEPARTAMENTO DE FISICA APLICADA II UNIVERSIDAD DE SEVILLA ESCUELA UNIVERSITARIA DE ARQUITECTURA TECNICA AVD. Reina Mercedes, s/n 41012 - SEVILLA

Segundo Parcial. Curso 2005/2006. 27 de mayo de 2006.

Nombre	e:			Grupo oficial:
Probl	ema 2º:	(2,25 puntos)		
materia 8 m de respecti tubería	l más aislant tubería y 6 n ivamente y e es 25°C y l	e. La longitud del 1 1 a su derecha. Los l espesor del revest a de las paredes ex	ate de la figura está revestida exterior revestimiento es de $20 \mathrm{m}$, dejando sir radios interior y exterior de la tube imiento es $3 \mathrm{mm}$. La temperatura deteriores $15 ^{\circ}\mathrm{C}$. Si la conductividad del material de la tubería es $k_{\mathrm{tub}} = 0.00 \mathrm{mm}$	n recubrir a su izquierda ería son 2,3cm y 2,7cm le la pared interior de la térmica del material de
(a) L	a resistencia	térmica equivalente	e del conjunto tubería y revestimier	nto.
• •	-		a por conducción a través del conju	
ay Disti	comingue de collec	2 ZONOD (A)B,	u vez, otá usociada	antagus en
	A		B	
	— 8 m —		20 m	6 m →
			$\frac{1}{Req} = \frac{1}{RA} + \frac{1}{RB} + \frac{1}{2\pi Krew}$ $B = \frac{1}{2\pi Krawb L_B} Lr_L \frac{r_2}{r_L} + \frac{1}{2\pi Krew}$	Rc 13 ;
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
RA = 399.16	KW, I RB=	159.10 4 +10	5.103 Kg = 1 21.103 Kg / Rc = S	32.10 W/W,) Reg = 1 92.10 K/W
6)	Q:-	AT A	onde $\Delta T = 10^{\circ} \text{C}$; ren $\sqrt{2} = \frac{10}{192.10^{\circ}}$	